|
请使用QQ关联注册PLM之家,学习更多关于内容,更多精彩原创视频供你学习!
您需要 登录 才可以下载或查看,没有账号?注册
x
# }3 {! i% z& X
2 _3 O1 g# ^ V: V1 r
' U/ T2 Q& D( r+ E9 L6 v
1 N5 }, R! j/ I( y0 L5 r. x- /******************************************************************************+ f; X+ x1 m) J+ @
- Copyright (c) 1999 Unigraphics Solutions, Inc./ b2 h* f/ d% @
- Unpublished - All Rights Reserved
5 F" S3 t% H( }5 T: k5 c! }! [ - 6 c) L* l% r3 {( z3 ?
- *******************************************************************************/
% n2 h# i% L) a4 s/ z9 C - /* This example demonstrates the UF_EVAL api for lines and arcs.
! L8 J, Q$ f. x8 j t8 P6 T5 l! U - Some of the UF_EVAL routines operate on an evaluator- U' M% N# g2 O: y, T$ G9 f0 C
- independent of type while others are type dependent. No longer use5 g3 b' d5 j! | T" i* z8 V
- UF_CURVE_ask_curve_struct ( ),
2 r! u, z7 M9 O. H3 O - UF_CURVE_ask_curve_struct_data ( ) and
" o) s8 `' M' M( O: k6 |# J. u+ ? - UF_CURVE_free_curve_struct ( )
" v% u7 z- n4 _8 ?; k7 A - */
+ U* h8 c0 {: t; _# d
! K2 F2 t/ r' G) L3 L/ L; y- #include <stdio.h>
- Y7 u' J4 b6 O1 S) s - #include <uf_object_types.h>
$ O+ j" l/ v5 G9 N' A - #include <uf_curve.h>
. j( c. w" L o; B- w - #include <uf_eval.h>: j+ E' d' a0 T! d( @5 B
- #include <uf_modl.h>3 H* T# p/ P5 R* |
- #include <uf_part.h>* ~, O# o( W: b: N, }- r
- #include <uf_so.h>' i# X r4 Z7 P# D; t* {
- #include <uf.h>
- w$ v4 v$ d9 ^ m# \1 X$ A - #define UF_CALL( X ) ( report ( __FILE__, __LINE__, #X, ( X ) ) )2 R' ?3 W3 b3 n r; U; X- z
- static void show_edge_points(UF_EVAL_p_t eval, int n_pts);
' W* r8 P$ }' i& h - /*---------------------------------------------------------------*/ X- d4 h7 g& ]: ?
- static int report ( char *file, int line, char *call, int irc )0 `/ m8 D( R3 B7 x( I, S
- {2 p. ~; @9 y3 R4 t
- if ( irc )
7 e4 A. c3 N. o1 C/ } - {
: E5 N O4 \4 i& F# @ - char message [ 132 + 1 ];1 c9 Q* ^3 w. s: K- i. t, M
- printf ( "%s, line %d: %s\n", file, line, call );
$ \& a$ F! u. j( t - UF_get_fail_message ( irc, message ) ?
) m8 V& x( g- V' e! L, Z - printf ( " error %d\n", irc ) :4 u# z# Y' {1 U1 j. ]1 X
- printf ( " error %d: %s\n", irc, message );
7 L- C5 ?1 r1 Y' ?4 f* q5 g - }
; t5 D% M1 l& N P& k# T- l - return irc;2 i. [, l) N S+ Z' J; f: a
- }
1 ^+ A: J% R$ _! _# ] - /*---------------------------------------------------------------*/
( S3 J( Y0 t* K$ h2 r, ` - int ufusr_ask_unload ( void )
0 M$ ]; d( b; d- u+ o/ `" U - {; r* m, _5 o* [0 s
- return UF_UNLOAD_IMMEDIATELY;! y0 p/ ?+ v) C" g( Z
- }# c1 _# Y/ [0 I: |5 ^
- /*---------------------------------------------------------------*/% s: d' k& K5 ?. W7 |2 F3 N
- /* ARGSUSED */
1 \ [$ c. c0 y! O, s% `9 J* K7 D - extern void ufusr ( char *param, int *reTCod, int param_len )
2 w/ Y) Z' b3 v9 _& [: G( e& Q+ D! w - {
# G! G+ W9 [2 d! W( x- h - tag_t line;
: G7 S! U6 ?' [$ F - tag_t arc;+ |. j2 U5 e) F) b9 K$ b x# w
- tag_t edge;' z, t; l: }) ^/ Y) w2 A
- tag_t edges [ 3 ];" v9 Z% [. P2 q
- UF_EVAL_p_t line_evaluator;
6 B: F* z: g/ l# s% y& t0 p- s - UF_EVAL_p_t arc_evaluator;& w$ @9 i9 V7 ]: X6 S1 H. w$ K
- UF_EVAL_p_t edge_evaluator;* U* n6 K. c, w. X- |8 a9 e, @
- UF_CALL ( UF_initialize ( ) );
4 `/ f9 P0 y8 v0 _9 R& u- X - /* # l2 L. h3 C0 F ]
- Create new part "ufd_eval.prt".
5 C1 c) o. y7 N; |8 n1 r -
% S4 d. n. V: a& v& ~5 z" V - Close part if it already exists.1 f* \ G5 S: f
- */
- B; A, ? z" D c - {
4 c Q/ `' M5 D" A6 N, \8 m - tag_t part = UF_PART_ask_part_tag ( "ufd_eval.prt" );1 O( Y) X8 j, A, t: M. P2 {
- if ( part != NULL_TAG )' q5 o; I! s5 _7 Q# U/ w9 J4 `. z+ M( ?4 ?
- {4 g' z( K- c. k# C' g! m# B
- UF_CALL ( UF_PART_close ( part, 0, 1 ) );
) H) A' x& m5 e* B8 u - }; g" j; ~1 ?; h: g" Y! r
- UF_CALL ( UF_PART_new ( "UGd_eval.prt", ; F% u; w0 B8 @; i' t C
- UF_PART_ENGLISH, - u/ {7 E6 v5 ]
- &part ) ); F9 K) L V7 O/ \5 o6 D. J
- }% ^ y& m! M) L: @5 v8 N
- /*
3 b" h6 e. d1 s) _& K* R! M - Create block and get edges. 0 ~' B* i" ^2 p" Y) v, ]5 C
- */8 O$ w0 R# ?/ a
- {
8 l% @/ ^- f* q - double origin [ ] = { 0.0, 0.0, 0.0 };* h) [6 N) N5 X) V; l4 s
- char *sizes [ ] = { "1", "1", "1" };, \+ b5 ~5 H4 I0 Q3 k. U
- tag_t block_feature;2 b4 s8 K3 l- }4 g# c N
- " O4 p1 e$ I0 G, R$ x( ~) K
- UF_CALL ( UF_MODL_create_block1 ( UF_NULLSIGN,
3 d1 N- m" Z$ Q% T" _( C3 e - origin, 4 _3 m: o7 o) L. ~$ W5 z; n; C1 o) G
- sizes, . m: v- b$ a L0 @ a1 ?$ p) a
- &block_feature ) );
- o" X) g! J! u W6 B) F - {
# L- U* { S2 U( M6 J$ M - uf_list_p_t edge_list;
# l8 u3 I9 C, g( r+ [: ]0 T8 Q2 w0 U - UF_CALL ( UF_MODL_ask_feat_edges ( block_feature, 2 M" H; ~2 o9 p- E3 U' F
- &edge_list ) );' W2 |' P8 J9 H
-
G- w2 I9 H8 Z. U' k# X0 ` - UF_CALL ( UF_MODL_ask_list_item ( edge_list, & @& L& m8 }6 y( o- u# }) O1 U B7 W
- 1,
0 Q; l9 ?; d4 ?# |* ` - &edge ) );: T' O9 _ s9 ~% J8 D1 y" J
- edges [ 0 ] = edge;
' f7 }7 G# J" Z$ J. [+ j1 D - edges [ 1 ] = edge;
7 }7 z" _( J5 X - UF_CALL ( UF_MODL_ask_list_item ( edge_list,
: H* R. r9 ?) D - 0,
8 U) [# M/ ~6 p N! `3 e* u - &edges [ 2 ] ) );( J" g2 S; k9 O6 Z$ a, j
- UF_CALL ( UF_MODL_delete_list ( &edge_list ) );
% n1 m% S- F$ O% T9 Q8 s - }1 J' o* w8 d2 I$ ?( }
- }
7 |: S7 z2 t5 Y% Y( N* F- O& Q - /*
) z8 M. f+ ^. P# h; p - Create smart line.
; f# w) J8 q; i1 f - */
% m/ c$ ~$ S% Y# Y - UF_CALL ( UF_SO_create_curve_extract
8 q8 Z, m4 B8 e3 \7 | - ( 6 f5 A+ G+ |8 ?
- edge, 1 T5 P9 j% a& ]# s
- UF_SO_update_after_modeling, 6 @* H7 [& G' B! j& g! B
- edge,
' n7 A0 v+ N7 k' k1 j/ t$ } - UF_line_type, /* enforce line type */+ |* W. ?& r9 e, w4 J& Y* C$ o+ r
- 0, /* no subtype to enforce */: a" l9 S1 ~6 m$ T) X7 |: r7 H
- NULL_TAG,
: O6 `0 c9 r" P" K; m - &line " H2 J5 D. w2 E! y w. @; }- J; t- B) U
- ) );
1 e0 r; C0 g6 V; k; c- O( j( i$ S -
1 f2 @; } O, x' _- e - /*
9 C, w |# Q" V0 o; k+ L' Y2 R* M% V- s - Create smart arc.% y$ L$ h- K5 c# P% @9 z) ?# w
- */
* D9 F: L) _# ~8 P; A - {
1 L: P, X0 | z - int i;# J2 Y# R+ k8 M6 I2 D
- tag_t points [ 3 ];( X# x3 q0 ] Z6 K, m$ W
- for ( i = 0; i < 3; i++ ). u5 [2 x. |% a2 a
- {: X3 S' y: H4 P
- char *strings [ ] = { "center=1.0",
: ]( ^* m8 L2 X& U3 \% U; @ - "start=0.0", ' S0 T4 G3 C( \. [3 W
- "end=1.0" };3 j$ m$ h; ^& M8 _
- tag_t exps [ 3 ];- b0 k: {3 a; O9 o/ R; O
- tag_t scalars [ 3 ];
2 E/ b2 L1 @' ]% a- v - UF_CALL ( UF_MODL_create_exp_tag ( strings [ i ], 4 ~: ?' T L$ E0 M8 a
- &exps [ i ] ) );
9 c( U1 W* C" ] - UF_CALL ( UF_SO_create_scalar_exp 1 o( i3 {7 v% g
- ( ' W' U$ s) q! h9 ?
- exps [ i ],
# B# }0 t# B* g h - UF_SO_update_after_modeling, 1 |, w6 L; B% F- f$ V
- exps [ i ], " L; r# _2 C0 Y- N* X/ ]
- &scalars [ i ]
^1 {4 F/ ~" R" o$ w p+ X - ) );( E1 c6 c; C( W& X9 O, \! c0 q
- UF_CALL ( UF_SO_create_point_on_curve 5 a2 z1 ^, \/ E" f# U% S& a {
- (" \/ x) q( {. P
- edges [ i ],
3 k% p0 Q( @0 }% a8 K* | - UF_SO_update_after_modeling,
: @& @& m: t5 k9 x: { - edges [ i ],9 _( _* B$ p, }0 P
- scalars [ i ], ! D5 f' [$ [1 b+ _0 e+ M
- &points [ i ]3 d4 y" z* @: @1 T- O3 R
- ) );" x5 n9 e7 W% \+ v* R c# B
- }
$ j8 J$ o1 q8 E; T* [; Y - UF_CALL ( UF_SO_create_arc_center_2_pnts ) L: }8 {2 b2 w: k0 ]- A- h; \
- (
' N6 n6 }1 g }9 B' i3 D - points [ 0 ], # j4 u- c4 v9 M( |+ f
- UF_SO_update_after_modeling,3 b- u, K3 Q' {* i2 v( d0 W& B
- points,
# l& q' z2 u& b* a# H& T# X: D - &arc & M0 i4 i, X$ p! m$ _
- ) );) {7 Q2 Y8 L: D7 [6 h3 ]' l
- }: ]# U4 s M3 U( h0 ^6 B! C- I
-
- N0 f$ A& X9 C - /*
/ R3 n* ^$ G3 d' Y( n& \& J! Q - Smart objects are created as invisible objects by
7 y4 @! Y B% t" ^ - default. UF_SO_set_visibility_option ( ) can be
6 j5 M3 G8 H8 a8 O, F( o6 u - used to make them visible in the graphics window.' k, {% [3 g8 H0 V0 p: ` w' _7 m
- */4 P! n* b1 S# ?% F+ w! w
- UF_CALL ( UF_SO_set_visibility_option ( line,
5 Z% t( ^4 T$ o0 D - UF_SO_visible ) );
; p" X' i A6 I. h, R+ } - UF_CALL ( UF_SO_set_visibility_option ( arc, ' C' }2 d- V) c3 P9 d
- UF_SO_visible ) );+ c' w! C1 n+ A# X; r3 w6 d: M
- /*
. P, S, h/ G7 j; `# B! e- J - Get line/arc/edge evaluators.$ _+ m& J0 a( M
- */
6 G( R& F: x; S" @* d; L* U - UF_CALL ( UF_EVAL_initialize ( line, &line_evaluator ) );- O0 q) [6 B& L/ |3 o
- UF_CALL ( UF_EVAL_initialize ( arc, &arc_evaluator ) );
$ P' P0 a: H- S. X G0 b5 L - UF_CALL ( UF_EVAL_initialize ( edge, &edge_evaluator ) );
1 w, M9 B' G5 d5 E - show_edge_points(line_evaluator, 10);
' f8 b" R% y. _9 _ - show_edge_points(arc_evaluator, 10);, B; c: v$ I6 J! m% [
- show_edge_points(edge_evaluator, 10);" C8 N7 ^7 m9 z+ {5 B/ W3 q, J* K
- /*
, K8 |: ?' q" \ _- O. Q5 A - Get line/arc/edge data.1 x" C9 ? j# [
- */ \8 t3 E# k- h0 y; F: d
- {
; a. t7 x1 y$ {6 l0 [5 Y* r - UF_EVAL_line_t line_data;
- f( d! w- H& W3 Q: F8 H - UF_EVAL_arc_t arc_data;
* k/ F' o) u+ c/ Z: h# n h! o - UF_EVAL_line_t edge_data;
5 L0 w# f- j1 r# S - UF_CALL ( UF_EVAL_ask_line ( line_evaluator, $ [) B; h1 ^) s3 s& Q7 Y1 K
- &line_data ) );7 x) N0 F* A8 K k. }* r
- UF_CALL ( UF_EVAL_ask_arc ( arc_evaluator,
" x9 @; f, ~7 ~& @- I - &arc_data ) );1 |) a! T: E6 Z$ v( f8 b1 [
- UF_CALL ( UF_EVAL_ask_line ( edge_evaluator,
* z9 @3 ? D- J" ~) y) J: n4 T) M - &edge_data ) );
$ [, [/ z9 w. k& |5 [- q \ - }1 h: Y0 Q4 d2 C# O4 z# ]8 I5 K
- /*
- f4 `' h/ m" z5 d - Check line/arc/edge periodicity.+ f- W$ {: U" x8 M$ i) C
- *// R9 H/ o$ B& Y; @+ D! E3 C: W
- {/ P; x& V7 u R7 K( Q5 q( F
- logical is_periodic;0 h& w+ H; d8 a, ?2 ~
-
6 H# m+ \4 P& l6 c5 j/ w - UF_CALL ( UF_EVAL_is_periodic ( line_evaluator,
/ J& Y$ B5 c" u8 v1 w+ T" f - &is_periodic ) );
5 @- u+ b: k& I, \7 |0 v - UF_CALL ( UF_EVAL_is_periodic ( arc_evaluator, & e8 W% U( I- W3 k3 |
- &is_periodic ) );
( h$ Z) z! M$ M* G - UF_CALL ( UF_EVAL_is_periodic ( edge_evaluator,
- ]1 _+ h5 P. L! B. u- | - &is_periodic ) );) C% d7 X% D! F" v* w* V u
- }& x1 n, c) f3 `- `/ L! p
- /*
* L u- ?2 Y$ D) ]3 E6 o - Evaluate line/arc/edge.
% N N. E# n- H4 n2 A0 ~ - */
; D, |2 M% ?. M' Y v - {
9 D3 ^" ?( R, K - double limits [ 2 ];
" S: A' v& Y2 Q7 }# o; u$ F9 k( Z - double mid_t;" w N9 @0 P, Q) Z
- double point [ 3 ];
0 f5 v9 s! X+ Z, X - double derivative [ 3 ];
! L7 g4 X6 }. A* q* Y - double tangent [ 3 ];
9 {8 Y* s3 s; h% U - double normal [ 3 ];
5 t$ o' i4 s' ~ W5 W# B - double binormal [ 3 ];
( ?+ q( |) A9 V' e! D) Y4 D, c2 P - UF_CALL ( UF_EVAL_ask_limits ( line_evaluator, limits ) );8 I2 m. C/ @: R
- mid_t = ( limits [ 1 ] + limits [ 0 ] ) / 2.0;0 @+ \" d( h, r9 M- b
- UF_CALL ( UF_EVAL_evaluate ( line_evaluator, % z: \* S* f6 Y1 Z5 E( n
- 1,
3 e+ d& V# P4 \+ K; F3 U6 W - mid_t,
( s T$ H/ x$ Y3 o* E - point, ; d" l9 Q j# Q
- derivative ) );( C8 x6 q' i8 k- ~9 r$ g, D0 B
- " d+ r+ L6 d: w6 p5 V! B5 w% O
- UF_CALL ( UF_EVAL_evaluate_unit_vectors ( line_evaluator,
7 h2 C' Q% Z. z9 M8 B2 a. y, K6 I - mid_t,
. h7 L8 k& @4 h4 D# B - point, # j/ S* \4 A0 p0 V8 w, E
- tangent, $ _) v) A; Q8 F9 R) M! D
- normal,
4 e; M* d7 _% i1 a- s# Q9 | - binormal ) );% @7 S- W [& L
- UF_CALL ( UF_EVAL_ask_limits ( arc_evaluator, limits ) ); B) A0 I: m$ p
- mid_t = ( limits [ 1 ] + limits [ 0 ] ) / 2.0;
6 z- V( b9 }* C) W -
: N5 V4 @/ m# d1 n8 B$ q; X - UF_CALL ( UF_EVAL_evaluate ( arc_evaluator,
0 D* X9 g! D: F+ j C5 X4 y - 1, - A1 o/ X- b: I2 T3 W3 Z8 T
- mid_t,
8 U a. _( ~8 S' |3 Y; X, A! @7 C% _ - point, * {# @( |1 n! `2 ^7 n
- derivative ) );
* {. l' N- z2 t7 z7 i0 {' a0 E+ m -
/ [. Z3 t9 d0 M6 v7 @# N - UF_CALL ( UF_EVAL_evaluate_unit_vectors ( arc_evaluator, 4 |5 h5 O7 A% R0 k
- mid_t, " `) \1 k- ~+ j8 K( {. A x
- point,
% t ]: P' x9 h& Q - tangent, ! V& C- k7 K, U9 e+ n0 ^+ o4 |
- normal,
0 I- n4 V" ^; V6 u% E) S( n& S) \ - binormal ) );
. X8 M S" M! O# ?3 V3 O3 E" r O, b - UF_CALL ( UF_EVAL_ask_limits ( edge_evaluator, limits ) );
# G; |0 l% `- L: @0 ]1 ?2 h - mid_t = ( limits [ 1 ] + limits [ 0 ] ) / 2.0;9 w: \5 j9 ^6 M5 U' I K5 v
- UF_CALL ( UF_EVAL_evaluate ( edge_evaluator,
' K4 |' }" j1 P4 P r3 C - 1,
' S! n# x! r+ ]; D9 {6 b - mid_t,
, n+ v7 S, Y+ n$ A) E- G - point, ' a- \" M g& d ?
- derivative ) );
5 C$ \, q1 R* _3 a6 s; k* e - UF_CALL ( UF_EVAL_evaluate_unit_vectors ( edge_evaluator, 3 I- J. U) E+ ]/ V2 Y/ R& U
- mid_t, ' G4 P; T* ~3 V" F, m
- point,
2 f. N% H; V3 P: u! w4 \2 I; ]! p; T - tangent,
4 A% L" i- J- {6 j3 C - normal, % k' o+ R6 J9 S8 y, Y; ^7 ~
- binormal ) );& a5 ]. I5 ?# `2 O) \3 O
- }8 T# M' K8 F: U! o
- /*
# A) n5 w! ?2 T1 [: x3 A# P - Check line/arc/edge equality of evaluators.6 ~- K+ Y5 E; L
- */
4 L) c+ J( r( L5 C2 B) S$ o - {8 s( T: C. F# [* h8 m- x
- logical is_equal;3 Q; F, @( h4 o0 ~9 c
- UF_EVAL_p_t line_evaluator_copy;" O7 w/ s6 {0 F8 o! @& }( F9 k# Y
- UF_CALL ( UF_EVAL_copy ( line_evaluator,
' Z! v/ R; H( X& u( C - &line_evaluator_copy ) );
8 a9 P% F, z6 U& b2 x L - UF_CALL ( UF_EVAL_is_equal ( line_evaluator, {% n9 S" D- Y9 t/ j: E
- line_evaluator_copy,& u+ o {7 p* M
- &is_equal ) );6 K7 o& X; G. t3 ^3 J3 F
- UF_CALL ( UF_EVAL_free ( line_evaluator_copy ) );
3 O1 P4 o: S+ _- y" f4 b - UF_CALL ( UF_EVAL_is_equal ( line_evaluator,
, j, h9 t O2 X1 |4 ^# r# X, q - arc_evaluator,
1 [; U8 |+ ^* @! I# [2 E$ Y - &is_equal ) );0 \8 r, I& i% C" t" H" r7 D1 v
- UF_CALL ( UF_EVAL_is_equal ( line_evaluator,
8 K! W: h( |. a - edge_evaluator, o: ]" e5 a# Y( P+ _$ D
- &is_equal ) );$ ?% j, a5 |# p- d: t
- }
* D) h9 M2 v$ Q9 U2 @$ h6 a" | - /*
D1 G2 J& F- P6 i" o, | - Check line/arc/edge type.
' R0 V' o& V6 b1 r7 [( { - */4 K$ Q5 z1 ~+ \9 K
- {2 K2 R5 K7 |; R
- logical is_line;% j8 I0 t# P* R; l/ G
- logical is_arc;5 `; J; N t$ z$ X& J2 D) G- D
- UF_CALL ( UF_EVAL_is_line ( line_evaluator, &is_line ) );5 _$ r# k5 d$ A
- UF_CALL ( UF_EVAL_is_arc ( line_evaluator, &is_arc ) );! F% a g' _' v, t% n. e
- UF_CALL ( UF_EVAL_is_arc ( arc_evaluator, &is_arc ) );
- A! Y- o, ?* {7 C: w% q5 n - UF_CALL ( UF_EVAL_is_line ( arc_evaluator, &is_line ) );- k0 G# c* Z8 e3 X* a+ {* p- k
- UF_CALL ( UF_EVAL_is_arc ( edge_evaluator, &is_arc ) );1 X7 L7 H' B: M1 [7 g
- UF_CALL ( UF_EVAL_is_line ( edge_evaluator, &is_line ) );
$ E, S% }9 ]; s4 l - }
g$ V; T1 Y+ T' {' _ - UF_CALL ( UF_EVAL_free ( line_evaluator ) );
. T+ G8 E$ |2 A/ ]1 M4 N; f - UF_CALL ( UF_EVAL_free ( arc_evaluator ) );' T1 ^8 |. w& ]7 i3 i: s9 ]
- UF_CALL ( UF_EVAL_free ( edge_evaluator ) );
6 g E# V8 e: O# H, `5 d - UF_CALL ( UF_terminate ( ) );# h: t( l# P# `! t8 u
- }
4 f C( j$ T# D$ p
, w! O1 [! w7 X, z+ e. ?4 C- /* This function will disply n_pts equally spaced along the# h2 o/ P" d. Z2 U$ x& Z
- input curve.
7 N7 i1 C( B/ Q$ h: q: i: E" { - */
; J6 e6 u" t9 C - static void show_edge_points(UF_EVAL_p_t eval, int n_pts) h& J, J% j/ i' R
- {% p! a% G6 ^. g8 r/ y3 h
- int ii;2 ?3 g' b0 C7 k" k/ k- W) R5 X
- double limits[2], p, point[3], end_parameter, start_parameter;# M2 O) j j, g, c5 ?- m1 u" u
- UF_OBJ_disp_props_t
. O" c& H6 f" j7 b - attrib = { 1, UF_OBJ_WHITE, UF_OBJ_NOT_BLANKED, UF_OBJ_WIDTH_NORMAL,
, K9 g& N2 y8 z8 O - UF_OBJ_FONT_SOLID, FALSE};
3 W2 K) T) f% p1 z! U, t x - " j$ H V: E( k& o( K$ e
- UF_CALL(UF_EVAL_ask_limits(eval, limits));1 h7 Q4 R5 Z/ G2 O9 m
- printf ( "limit0 = %f\n", limits[0] );
3 C) h8 P7 A6 { u9 i$ v6 M. s - printf ( "limit1 = %f\n", limits[1] );
$ ^3 O$ {4 f$ r6 y# @; t - start_parameter = limits[0];
4 a. E6 }) K" u0 l7 _6 J, `' G - end_parameter = limits[1];
- r7 r5 a2 j* T0 H2 P
& Y- ~- t& N, Q- for (ii = 0; ii < n_pts; ii++)) F. R2 G! x! N- R* r
- {8 G/ W% [6 r! l0 Z q
- p =start_parameter + ii*((end_parameter - start_parameter)/(n_pts - 1));* H5 g6 Y2 \9 M+ ]( B) V, m3 d
- printf ( "evaluate = %f\n", p );0 E2 q7 T7 j3 x$ b: \ j1 F
- UF_CALL(UF_EVAL_evaluate(eval, 0, p, point, NULL));
0 h& `/ N, L! z4 i1 [9 ` - UF_CALL(UF_DISP_display_temporary_point(NULL_TAG,' w: P9 k u$ F) ^$ H& t. o3 W7 w
- UF_DISP_USE_ACTIVE_PLUS, point, &attrib, UF_DISP_POINT));
# v- ]& o6 U2 s8 i( t* D - }
% f: X. g( M, M& ~4 ]: R - 7 `& F! O2 {; V" d3 [
- }
5 Q. O: F4 t0 F/ o3 J0 v# y$ y& ?
复制代码 ! e! x8 k2 o/ ]* o
1 C4 ^4 K9 \# z0 z
; P, \" h: B, `9 \/ ? |
|