|
请使用QQ关联注册PLM之家,学习更多关于内容,更多精彩原创视频供你学习!
您需要 登录 才可以下载或查看,没有账号?注册
x
2 a- Q, s+ x% I5 A9 I# [# D0 i
" K& |" e& Q' I- ?8 A# k: r
, W% N5 y$ Z q6 V/ x3 e$ O
3 S$ `0 u- }3 @% Y: w: S- /******************************************************************************
0 _0 ~ u5 H% r) s! ], v( }* r% j - Copyright (c) 1999 Unigraphics Solutions, Inc.
! _' T( [! ^6 j4 K5 j - Unpublished - All Rights Reserved3 F% ^" x. Y. @# L2 K
4 Y' N, C* f0 f P; _- *******************************************************************************/
: e4 z& l, {+ Q9 j; O+ S1 O - /* This example demonstrates the UF_EVAL api for lines and arcs.9 h/ r8 ?4 @* a- |% |
- Some of the UF_EVAL routines operate on an evaluator
" p0 B a3 D# c: K, i' z5 F9 W - independent of type while others are type dependent. No longer use
8 |: Q) P. U! r8 ?* I: |* ` - UF_CURVE_ask_curve_struct ( ),, c7 e9 f y% p( h6 k- E" \9 A
- UF_CURVE_ask_curve_struct_data ( ) and
( D, a5 L7 F( ~) ~. Y. ^; T - UF_CURVE_free_curve_struct ( ). i# J: _& F9 x& v' m8 A
- */& S* Y4 _2 z+ T# q/ |8 g6 _7 K; q
" n+ Z: E8 Q! _) T* M* h$ R- #include <stdio.h>
& W2 m5 K+ |) t O7 Z: o& b - #include <uf_object_types.h>' v2 s) t+ y. S
- #include <uf_curve.h>
1 e0 p6 p9 [. Q* p( {- e+ S - #include <uf_eval.h>
. e: u8 I$ ?! P( Q/ Z* P5 b1 _5 k - #include <uf_modl.h>
. G, T3 {8 t+ k6 t+ R8 q - #include <uf_part.h>% a5 }1 s; P! u/ V v2 Q
- #include <uf_so.h>
( _8 l+ u; f7 j# A% b; ?9 U - #include <uf.h>3 G( e/ S1 I+ n9 Q
- #define UF_CALL( X ) ( report ( __FILE__, __LINE__, #X, ( X ) ) ): _8 @" }1 \+ V" r2 G
- static void show_edge_points(UF_EVAL_p_t eval, int n_pts);- P, w8 P+ P! V5 H$ \
- /*---------------------------------------------------------------*/
7 T. |) F6 f) R0 [ - static int report ( char *file, int line, char *call, int irc )
" O" [5 z) b( e2 i - {
- o3 F h/ w1 y- R$ p - if ( irc )( G$ H6 X& S0 }; _9 z0 {* x
- {
, z4 `# X8 Y" p - char message [ 132 + 1 ];
4 o# Z" {: A. ~3 c - printf ( "%s, line %d: %s\n", file, line, call );/ O( a9 S# G, n! d, s2 |# |
- UF_get_fail_message ( irc, message ) ?
' v% v: E. C" C: o5 V$ K# e - printf ( " error %d\n", irc ) :
9 P1 Y7 ?1 b/ d( a, ~ - printf ( " error %d: %s\n", irc, message );
) k- u! u1 j+ o d+ E' W - }; t8 C: ^% @: n. _, i3 y6 b
- return irc;
. V3 ?4 f% V- d# Y6 X S - }
! ~+ K* c- W# Y5 ?/ m: q - /*---------------------------------------------------------------*/
5 m3 t6 I3 k. ]2 H7 c5 }% @: K - int ufusr_ask_unload ( void )
3 q7 o! @+ I$ R, g% d+ c! x. D - {
- u4 [0 l5 ]3 P3 O4 ~' ~ - return UF_UNLOAD_IMMEDIATELY;) U; c1 S+ m- Z, G8 b9 j6 O
- }' d! ?4 l, n0 l; f
- /*---------------------------------------------------------------*/
7 y: z0 x# e3 S8 T# [2 V - /* ARGSUSED */" W8 B6 s# Z) |* d7 e
- extern void ufusr ( char *param, int *reTCod, int param_len )
. s- \# T2 |5 h/ Y" f/ A2 P6 K: Z - {
8 d9 ]2 D, t1 S0 [, ^ - tag_t line;
: Q: J- H0 d) y% Q, o - tag_t arc;
9 w9 Y9 Z: Q* g3 Z4 q - tag_t edge;
9 ~' m7 Y+ [$ N, o, P/ N: Z - tag_t edges [ 3 ];8 I1 `1 A0 e, K3 R6 z( T( J9 v
- UF_EVAL_p_t line_evaluator;0 i7 e {- {/ k6 E
- UF_EVAL_p_t arc_evaluator;
& M7 g* f# T `! V' t( o - UF_EVAL_p_t edge_evaluator;8 F! t o3 j" O& x7 A9 f( X: Z) }" v
- UF_CALL ( UF_initialize ( ) );
1 V) P- t6 j+ y - /*
& O, t' G3 w9 E- M4 L - Create new part "ufd_eval.prt".9 S, i# Z1 R+ B& U: l
- 0 |% Z) H7 l, \ s
- Close part if it already exists.' e$ o( o' [1 E6 M% O4 }
- */
* m G) a$ n* r6 {( R( v - {
5 c5 o' I9 ]" W, ` - tag_t part = UF_PART_ask_part_tag ( "ufd_eval.prt" );
* k1 E! `" `5 s; q# Q - if ( part != NULL_TAG )8 [+ P* A2 `7 U% {, J
- {2 F& p% p+ U4 Y; t! L K' l
- UF_CALL ( UF_PART_close ( part, 0, 1 ) );
( T2 B7 D, `+ _" B/ j - }9 v- t* f* i- i. ^3 o% s
- UF_CALL ( UF_PART_new ( "UGd_eval.prt", 2 Y t2 o; }2 d
- UF_PART_ENGLISH,
0 h" i' u3 I. R* P) _2 j7 F4 @9 y% a/ i - &part ) );
" A8 O' K5 J% m6 C, G( S - }: a3 y2 @ [7 c/ o7 \
- /*
. z+ S! q v( e; U8 |) ^9 G: K0 I - Create block and get edges.
2 p1 X- r5 m2 D- ]0 c& o6 Q - */& s4 z/ U. ^7 X8 E5 A9 u$ X9 F
- {
& g2 Q) z! S- r; T: Z8 A - double origin [ ] = { 0.0, 0.0, 0.0 };. k7 |$ M3 W, L5 `1 u9 G
- char *sizes [ ] = { "1", "1", "1" };2 L2 k4 N n/ I9 N
- tag_t block_feature;
, H) N9 T- w' i; q0 H9 | -
! y" ?* D- x ^5 u3 r - UF_CALL ( UF_MODL_create_block1 ( UF_NULLSIGN, # t5 I0 h5 W# }) ~+ ~4 g
- origin,
. G( [) X1 t1 R9 e v1 Z - sizes,
- K4 `6 F/ z4 u1 v$ I - &block_feature ) );
6 c9 `8 a2 ^8 H% a2 \) g - {# g# }9 k( X1 H( F, H4 |# v8 \
- uf_list_p_t edge_list;" q0 `2 l- M4 y+ K1 }
- UF_CALL ( UF_MODL_ask_feat_edges ( block_feature,
, | N6 B" R: K9 I0 c2 e% \ - &edge_list ) );( P2 W' I2 X/ N# a; H/ O* H3 O Q
-
- H* s( c! k; L* `2 h - UF_CALL ( UF_MODL_ask_list_item ( edge_list, 9 V- T; A2 ]8 H# Z3 e+ o
- 1,
2 |% E) C5 b1 Y. T - &edge ) );
3 n9 P \) g' |0 ~9 s2 S" o - edges [ 0 ] = edge;
* W8 M+ X+ u" \ - edges [ 1 ] = edge;
- R/ U9 }1 j$ I+ E - UF_CALL ( UF_MODL_ask_list_item ( edge_list,
5 S- A$ i- C" N0 N - 0,
4 Y) `& B) T' d/ K - &edges [ 2 ] ) );- d0 g9 O7 i& c8 r6 f
- UF_CALL ( UF_MODL_delete_list ( &edge_list ) );* l& D0 H2 W8 I& \% I
- }; x5 o- }& w$ X( H$ R) S" u9 X
- }; q' [. Z7 m; T* w+ X" V% {+ I
- /*
6 S* ?/ y( r$ n0 B; q; x7 p0 X, J - Create smart line.2 m5 O, }; g% U1 @3 [1 w. |9 @
- */
% [9 D; y) j- X R - UF_CALL ( UF_SO_create_curve_extract
% C6 j7 s6 U# b: j8 U9 S* X" O - ( 6 U+ I* ^0 ]0 X% T, \- b
- edge, ) v' D5 d" z: [( {
- UF_SO_update_after_modeling, / e$ A$ J' a. F% W* o
- edge,
" w, ^4 W5 F B2 | {* c' Z: w - UF_line_type, /* enforce line type */6 s" g% y& R! X9 {
- 0, /* no subtype to enforce */: B0 s# J, } {" b/ F5 l: U+ q: }4 Y
- NULL_TAG,4 Y2 C$ ] e5 }; `6 j& E) Z
- &line 2 _2 C9 j3 [$ s
- ) );
! L" p; V9 ?4 e* k2 N0 X - , ~3 Z) r2 R- V0 v( V+ I' `
- /*
, ]. t, L, S: L+ K# P8 z! ^8 | - Create smart arc.+ q7 C4 h# J" }
- */
0 S: b" d3 y9 R* R - {. P+ o: a- o, e4 Q. ^$ q7 U7 V
- int i;" A7 k% E! C+ y" F
- tag_t points [ 3 ];6 L. n$ L; c7 H% H& y* c
- for ( i = 0; i < 3; i++ )
8 |: _7 o: u w( ?/ O- q3 u+ i+ G - {0 N9 n5 q' _* |9 F$ e" t
- char *strings [ ] = { "center=1.0",
% z4 x# V0 j7 u* f# F3 u - "start=0.0",
( E3 y7 _( e p5 e- u5 O - "end=1.0" };; y4 ~- O: j& K p8 E& w
- tag_t exps [ 3 ];
# q8 a( z- h2 L7 `4 a6 r - tag_t scalars [ 3 ];
4 V, |& x4 J; U0 g - UF_CALL ( UF_MODL_create_exp_tag ( strings [ i ], 9 Z% o* a0 X& M1 m" m ~
- &exps [ i ] ) );
7 Q, }) Y9 e- U - UF_CALL ( UF_SO_create_scalar_exp
9 b9 s/ S! {, m! s - ( 2 S$ K O. v8 i
- exps [ i ],
8 [/ E! n; _6 Q# M" J8 o - UF_SO_update_after_modeling,
% w: K) s# Q1 U& {" { - exps [ i ], & x2 { r/ V5 n3 j6 @$ B
- &scalars [ i ]
8 G5 K8 W! r, Z' d - ) );* E2 o6 A }- m
- UF_CALL ( UF_SO_create_point_on_curve ; B' m) E' \0 B7 t8 [! o4 k' W
- ($ O T! b# J8 X
- edges [ i ],9 [8 \. B$ R, c. L
- UF_SO_update_after_modeling, " D( m, {9 H2 R3 i" L4 J
- edges [ i ],
% t3 G( f6 N! _0 b/ n0 h U* \ - scalars [ i ], 7 B5 k: t3 z! E
- &points [ i ]3 V+ i0 X6 L; f! x- C7 q+ _, `2 p
- ) );
* Y1 L) Z4 q0 R2 a Q6 r9 q - }# V0 |, a8 j. M+ a8 t
- UF_CALL ( UF_SO_create_arc_center_2_pnts
! }8 C. b, _- z, F5 ? z - ( , V3 O: c! W: H, r9 A0 B& H5 `; e
- points [ 0 ],
: H, ~& a7 ?2 `! x; }6 l - UF_SO_update_after_modeling,! P8 A- |( w8 |5 p7 x5 F7 F( y
- points,
; N: L+ N+ T+ d4 {+ [7 s - &arc
O$ H8 b3 N) C$ D. H$ C - ) );
" q q# Z; _) E- p, ?* r - }" l7 [! w& ]* i6 w- @) ~( M
-
6 e+ u: C' ~7 b- S& { - /*
: |' ^! C" s' j1 @& N% i' R - Smart objects are created as invisible objects by # _$ z1 u/ F9 ^+ y1 J! O& I
- default. UF_SO_set_visibility_option ( ) can be
& V! g9 F1 p; p3 y - used to make them visible in the graphics window.
7 ^# T7 v) B' N$ L6 ~ - */; J- y8 E. T0 z4 H& k ?0 x
- UF_CALL ( UF_SO_set_visibility_option ( line, # ]) m8 J( j) \0 `2 D. O) J1 u7 M
- UF_SO_visible ) );
, _1 R1 c# S/ r" E, c4 h8 D - UF_CALL ( UF_SO_set_visibility_option ( arc,
$ q0 k# S! g I9 X' j& B& N3 \( _ - UF_SO_visible ) );
7 ]; ^" e3 T1 M& S - /* : _. x4 b6 L2 V
- Get line/arc/edge evaluators.
& B( U8 I$ E/ o+ w3 k/ F - */
& Z) ]7 f' c7 l' v6 h - UF_CALL ( UF_EVAL_initialize ( line, &line_evaluator ) );
9 L/ q9 g- E5 H6 ]/ @( _ - UF_CALL ( UF_EVAL_initialize ( arc, &arc_evaluator ) );
/ [% Q0 Y8 x# i* R H1 I; { - UF_CALL ( UF_EVAL_initialize ( edge, &edge_evaluator ) );4 U* t9 \- M9 W$ b O# I/ v
- show_edge_points(line_evaluator, 10);
( U3 j/ l7 j% J - show_edge_points(arc_evaluator, 10);
2 q8 S! B! m! a* V; t* z - show_edge_points(edge_evaluator, 10);
$ _# {- `; j* p3 E( B - /*
1 l6 w! s8 Q* `8 S7 w - Get line/arc/edge data.1 f) b- {, k; c7 }$ E1 y
- */: t! N" b: e& @9 p
- {
( ~( _0 U' G9 J& e$ c( N! ~; C - UF_EVAL_line_t line_data;. x* _0 k, L7 b6 _: h' D) ~( y5 l
- UF_EVAL_arc_t arc_data;
2 D U5 y) A- U8 {1 f" w - UF_EVAL_line_t edge_data;+ e$ p: f5 t9 d) ^( s$ l C
- UF_CALL ( UF_EVAL_ask_line ( line_evaluator,
% b0 s3 A# @( K. c - &line_data ) );
8 c. m. o- N! U! R2 g* F - UF_CALL ( UF_EVAL_ask_arc ( arc_evaluator, e& S3 G0 t: l" i3 G
- &arc_data ) );
9 K" Z# @+ l+ b) ? - UF_CALL ( UF_EVAL_ask_line ( edge_evaluator, _8 Y7 J1 B1 d2 S! l* C
- &edge_data ) );
# d: C5 R' k( j6 O/ d: R! Z, o- ?5 Y1 N - }3 l0 p+ y |# S! g; e
- /*
$ D% e& F$ ^) K - Check line/arc/edge periodicity.1 i2 d1 H* Y) m: D
- */
# m2 g8 ?0 f1 m1 @" M( O T# j: U - {9 `1 m. _% P, f. H2 y# A
- logical is_periodic;
' s- e3 E" P7 F4 q' r7 y3 D" ] - ' S! S& A. A# E9 J
- UF_CALL ( UF_EVAL_is_periodic ( line_evaluator,
b @4 i, n0 Q: Z; Y - &is_periodic ) );
2 H9 i4 j9 p9 V' X - UF_CALL ( UF_EVAL_is_periodic ( arc_evaluator, 6 @4 `0 o+ k( k, k3 q
- &is_periodic ) ); x! F/ o2 L. D$ j7 M2 u# [) h
- UF_CALL ( UF_EVAL_is_periodic ( edge_evaluator, ; V: n O8 p9 t
- &is_periodic ) );
$ `4 r: q) l9 l) `% Q6 \5 ] - }2 O' P: o( k( p- Y M
- /*
, r4 m& @- |! L0 s1 @' t - Evaluate line/arc/edge.6 k, W# ~! ?4 I8 U2 |# B
- */
: i h- q2 {7 p4 H' e - {& n5 H4 a, n. u% r- N
- double limits [ 2 ];
% |" N7 p4 e' j - double mid_t;
2 C9 k+ d1 e5 T2 Q- a1 d - double point [ 3 ];) h( Q& Y5 N' A6 v! ]
- double derivative [ 3 ];$ N" H6 E" h' c
- double tangent [ 3 ];
# |- X8 H7 Z Z3 a( o - double normal [ 3 ];
) R S+ I+ }: `$ H - double binormal [ 3 ];7 r& }: {7 g" j: f) E
- UF_CALL ( UF_EVAL_ask_limits ( line_evaluator, limits ) );+ u s) X* ]3 A+ l4 k" h
- mid_t = ( limits [ 1 ] + limits [ 0 ] ) / 2.0;
4 I0 H3 U& N# A - UF_CALL ( UF_EVAL_evaluate ( line_evaluator,
, G6 c2 s4 G) s3 B4 Z1 M% h - 1, 4 K; `6 H& M8 I3 L2 A3 n2 i
- mid_t,
5 _- z9 T# k9 t& [ v- K - point,
# M6 G: s- x3 ]0 {/ s5 u - derivative ) );
4 V% v, r7 @# u9 `* A/ O -
% ^* h$ C4 ^5 x5 V - UF_CALL ( UF_EVAL_evaluate_unit_vectors ( line_evaluator, + `6 j$ a: \7 n5 i' _& ?
- mid_t, # Z, V) J) S* N/ h+ V! ]: O) O
- point, - B4 D$ t& e: i$ k% N8 ~% Y
- tangent, % G3 `* r* S1 f; n6 }, M' z
- normal,
" w1 p5 v, P% X# n - binormal ) );
3 H: O& E U) S - UF_CALL ( UF_EVAL_ask_limits ( arc_evaluator, limits ) );5 B& @& u/ D n! n( f5 T
- mid_t = ( limits [ 1 ] + limits [ 0 ] ) / 2.0;
! W' ]2 a0 v* _* [6 ` - 2 D: o- D0 R8 J) Y/ W( Q
- UF_CALL ( UF_EVAL_evaluate ( arc_evaluator, 4 l" M+ o3 o. S U* c0 G
- 1, 7 z7 K2 q/ d- m& q6 p% t9 Z* [
- mid_t, # [% t5 u1 x. H8 g: a6 ~7 y
- point,
$ ?' s( m P5 x9 Y( f7 X - derivative ) ); V0 e2 Y: e% n# \2 w; n
- 2 I6 K8 `1 r; \3 f! f' U1 Q$ |
- UF_CALL ( UF_EVAL_evaluate_unit_vectors ( arc_evaluator, & h2 u+ B7 N+ b; y
- mid_t, 2 j2 t, _1 D' \( n u& L4 w
- point,
5 B. b! i$ {7 c9 V/ z! c4 j5 C8 H L - tangent,
, q8 S3 s9 K4 [7 b - normal,
I6 G3 k, X& r* [# j! E - binormal ) );
8 |/ a% w' K2 u' f6 F# _) x* n$ T - UF_CALL ( UF_EVAL_ask_limits ( edge_evaluator, limits ) );3 q9 I9 W8 R" L7 U
- mid_t = ( limits [ 1 ] + limits [ 0 ] ) / 2.0;
( O( \/ a8 r9 @* J9 Q9 O - UF_CALL ( UF_EVAL_evaluate ( edge_evaluator,
% H5 T1 l" J5 i9 x4 J - 1,
' j1 j6 |* R, f& S - mid_t,
7 w* F8 Y( K9 j - point,
1 G- X% R; V+ n) H - derivative ) );
6 n5 t1 ~5 F; m7 A1 L4 ^ - UF_CALL ( UF_EVAL_evaluate_unit_vectors ( edge_evaluator,
3 B* M6 V# ?3 j1 x% ? - mid_t, , T. U( i. o( Q3 U* ^2 b
- point,
; k/ g0 h' K! \5 N - tangent,
& ]; L1 X: v2 |9 m) M - normal,
: n* f Z% ?% X - binormal ) );
c! X9 l' a# x* N - }) ^, k4 d f# [. J2 C
- /* 1 s/ Y8 l# U8 H3 G3 G; s
- Check line/arc/edge equality of evaluators.
0 A; {4 ^) S8 M, M) r$ y - */
" J! K; }( a1 [ - {
4 p' O/ Y- u# z0 W - logical is_equal;1 ~& Q$ p, o9 w9 r# W; v. Q, x2 p% }
- UF_EVAL_p_t line_evaluator_copy;+ ^2 @1 r& M: k4 t; r" }
- UF_CALL ( UF_EVAL_copy ( line_evaluator,
- x, a8 k- _' p* G: f1 Q: N% W- q - &line_evaluator_copy ) );) ^$ k m" j0 `1 ^4 F* t5 l
- UF_CALL ( UF_EVAL_is_equal ( line_evaluator,
! ] ]/ V7 P; \, {5 J3 C - line_evaluator_copy,
+ |: h' y: S* @8 y+ X, `; @8 |( i - &is_equal ) );
$ d: _& o2 A9 S1 a& G - UF_CALL ( UF_EVAL_free ( line_evaluator_copy ) );
! x# Y7 H" @! I. k% Q- `& Y* N - UF_CALL ( UF_EVAL_is_equal ( line_evaluator, 5 o6 t8 Z% G" U# {" @4 ^* W- s
- arc_evaluator,
9 {+ Y+ d: O) d; J - &is_equal ) );9 W. i7 ~% L" c( J+ M
- UF_CALL ( UF_EVAL_is_equal ( line_evaluator, 7 n l W+ p: K4 G* B
- edge_evaluator, / l. i; X1 g# r+ x% N) V
- &is_equal ) );
% ^4 F( f; d& f) p3 m, r g - }
2 S/ P: ]) B( @) O* U6 v - /* * b% o+ D' A Z* S% S' \( ~' ^% p
- Check line/arc/edge type.
; W2 v* u, P2 m - */
; E8 Q9 f& Q: q( c: a" l. ~ - { f8 k% S! {, b( t
- logical is_line;
7 ]0 C9 ?. f3 ]& n$ Z6 e% g - logical is_arc;4 _% t" B3 N5 `* J+ H
- UF_CALL ( UF_EVAL_is_line ( line_evaluator, &is_line ) );
3 \5 ^9 ?) ]+ f+ }5 ], g" V9 _ - UF_CALL ( UF_EVAL_is_arc ( line_evaluator, &is_arc ) );
4 u) W C5 a: B) \# T' X - UF_CALL ( UF_EVAL_is_arc ( arc_evaluator, &is_arc ) );
4 i# q0 W: L; t3 B - UF_CALL ( UF_EVAL_is_line ( arc_evaluator, &is_line ) );
" i$ h! w, A& a$ ~- i3 t, u - UF_CALL ( UF_EVAL_is_arc ( edge_evaluator, &is_arc ) );: [% }- m E( X; W! T4 s5 E% z+ P
- UF_CALL ( UF_EVAL_is_line ( edge_evaluator, &is_line ) );
# E; }3 ~9 j- Q7 S* u - }
u3 h& z1 x* ~3 M e - UF_CALL ( UF_EVAL_free ( line_evaluator ) );5 z4 ~4 Q0 F w9 O) }4 V8 c
- UF_CALL ( UF_EVAL_free ( arc_evaluator ) );
/ @' Z" \5 q% D - UF_CALL ( UF_EVAL_free ( edge_evaluator ) );
# `' X5 A# O8 Z1 B$ y - UF_CALL ( UF_terminate ( ) );
3 w# }' Z7 m2 C4 D4 J# ~ - }
2 j1 H" G* V& ~! e' q" j1 [/ I! B
0 T0 M/ N1 J4 d# t- /* This function will disply n_pts equally spaced along the+ O6 N1 r4 e e& g; r1 Q' D
- input curve.+ S1 ]0 H5 T1 W% o. n* N
- */) F2 O9 r$ m* R$ J, y
- static void show_edge_points(UF_EVAL_p_t eval, int n_pts): n( P+ k+ A7 N$ t5 @) w8 U
- {
; {+ Z" W3 k8 }, @- l - int ii;
& y. F) u' W6 T7 O) b - double limits[2], p, point[3], end_parameter, start_parameter;; ~% z3 H4 f2 l. g, _1 Q
- UF_OBJ_disp_props_t
$ i7 D8 b& C# C1 n$ m6 A2 I - attrib = { 1, UF_OBJ_WHITE, UF_OBJ_NOT_BLANKED, UF_OBJ_WIDTH_NORMAL,
Q' M7 g& V& ~9 v* Q - UF_OBJ_FONT_SOLID, FALSE};
0 }+ D( W+ ?, j& S) Q6 g1 M0 m6 i - , _3 m$ \- b; T1 `
- UF_CALL(UF_EVAL_ask_limits(eval, limits));
$ a% V7 O/ h8 D' u0 I - printf ( "limit0 = %f\n", limits[0] );
; B; B% O5 r. Y0 g' g3 p- Q) J - printf ( "limit1 = %f\n", limits[1] );& {7 l/ p: O5 q# [, D. }
- start_parameter = limits[0];
( s2 Q0 t' ? ]3 R7 r3 p* ^6 f' C( C - end_parameter = limits[1];
0 h( t5 i" w& F- M* d5 A, N
9 e& ]. O( q2 I8 M {- k: O$ v- for (ii = 0; ii < n_pts; ii++)
# x) D3 ]/ h& X - {
+ k# y4 E t- z; \7 G6 }; } - p =start_parameter + ii*((end_parameter - start_parameter)/(n_pts - 1));/ a8 j" ?$ U3 `$ \2 l8 d6 v
- printf ( "evaluate = %f\n", p );
/ X p3 [, I+ M% ] - UF_CALL(UF_EVAL_evaluate(eval, 0, p, point, NULL));
7 A, I5 j% f6 p5 Q j; ] - UF_CALL(UF_DISP_display_temporary_point(NULL_TAG,
8 Q1 `: z- ?2 ` - UF_DISP_USE_ACTIVE_PLUS, point, &attrib, UF_DISP_POINT));1 q& r9 c. K) D$ P" D4 k# R( l
- }
4 ~9 p! Z. o# T% m - - x7 X# s1 y+ `# w
- }5 V6 a8 g" |6 Q+ C0 R3 T3 A& v" A
复制代码
( Y Y- V" I. m+ X3 t, e; w, Q$ q" Z4 c& c
/ G8 p* t) w/ ?6 b; V; d' I |
|