|
请使用QQ关联注册PLM之家,学习更多关于内容,更多精彩原创视频供你学习!
您需要 登录 才可以下载或查看,没有账号?注册
x
' ?8 |# `2 i* h) J3 u9 D
. J' w# V4 a0 p r4 N7 |
5 u: p2 N# l( H' T( [2 J" t
& J6 U+ ?; H$ q3 |- /******************************************************************************* S! [- o5 F1 m8 V* V, k8 [ O. k4 j
- Copyright (c) 1999 Unigraphics Solutions, Inc.
0 I* C6 O3 F: Q: k - Unpublished - All Rights Reserved
' R& l% | t" P9 q8 d1 x/ R W# F+ t
6 x4 Y# S& T! x) Y2 w' X- *******************************************************************************/
: a. c( U8 {- v' z9 A+ {. I% P - /* This example demonstrates the UF_EVAL api for lines and arcs.6 v8 m2 Y9 E0 a( @2 M8 r
- Some of the UF_EVAL routines operate on an evaluator! n) V' B/ l, ^! ~& D: `
- independent of type while others are type dependent. No longer use" Q; P) j: Q/ ?( E9 q& e y
- UF_CURVE_ask_curve_struct ( ),
4 Y; [/ |: T6 y# D" T - UF_CURVE_ask_curve_struct_data ( ) and
# o: E$ ], B3 t9 g - UF_CURVE_free_curve_struct ( )
; _2 F }. ?9 n, ^# W0 {2 d - */
3 z% O3 V: W2 A8 C - * w$ J. o; c3 r; Z0 S1 E
- #include <stdio.h>8 K% o: U' M% T* c% ]
- #include <uf_object_types.h>
: x" m" O7 u' I3 Y - #include <uf_curve.h>
1 p# I. C# B/ V - #include <uf_eval.h>6 \6 [3 K' Z6 b. c
- #include <uf_modl.h>
. ?* ^; P$ b% N \ i/ w$ _, o - #include <uf_part.h>
* j! S% {: E4 N, k1 w3 H" U/ I - #include <uf_so.h>
6 V1 i. K/ E' @0 l0 L" T - #include <uf.h>6 Q" i5 m+ _, T2 o6 h4 I9 s+ L
- #define UF_CALL( X ) ( report ( __FILE__, __LINE__, #X, ( X ) ) )
; \% T$ @0 ~* N | - static void show_edge_points(UF_EVAL_p_t eval, int n_pts);
6 e* B1 p H3 f3 M$ w# b. x, G - /*---------------------------------------------------------------*/, j+ P; S, b. Z; u8 E0 E
- static int report ( char *file, int line, char *call, int irc )
& ~, Y3 d, T3 W - {9 f3 I9 }( v% q
- if ( irc )
: e% J j6 I' }* k) X) G+ S - {
- j/ b/ T* B- u8 M - char message [ 132 + 1 ];7 V" U+ [1 k( k( d- |
- printf ( "%s, line %d: %s\n", file, line, call );
' s1 Z: c& y7 p+ G - UF_get_fail_message ( irc, message ) ?! S: p3 q" z# C7 Z
- printf ( " error %d\n", irc ) :
: j' O3 d* Y l' o2 x! r" d - printf ( " error %d: %s\n", irc, message );2 D$ |0 h* q, y( w0 S t Z
- }
& n- u+ q# m* }+ H; H - return irc;
: W5 z# M# C0 a' ` g; W( L! | - }
% r# Q4 r' [9 m+ E7 I6 k. g6 W - /*---------------------------------------------------------------*/
2 w; C" T4 p* ^+ V3 f - int ufusr_ask_unload ( void )" b& z% m1 J( r) X1 `$ C
- {
) B1 V$ J9 V8 L( {; f" K [$ j" c - return UF_UNLOAD_IMMEDIATELY;" t& i g/ r1 C* j6 o
- }( [3 Q0 e9 \- h# @
- /*---------------------------------------------------------------*/# S j+ C) o& j) H
- /* ARGSUSED */8 G) } B& i6 u; s, Q2 C F
- extern void ufusr ( char *param, int *reTCod, int param_len )
- D$ A. r* M [ - {" ?, R) y2 U0 f
- tag_t line;
0 ]0 H$ @! `) @3 I9 I - tag_t arc;
8 R7 v& m6 y- D- h" N; _# j - tag_t edge;( B$ C) W- L- j! t! o, C
- tag_t edges [ 3 ];
2 o, i6 y! U- R4 O# a$ D - UF_EVAL_p_t line_evaluator;1 @) i7 ~+ ^8 j- U6 W2 x
- UF_EVAL_p_t arc_evaluator;
1 ^! T) ]5 J& ~9 P! w8 w2 x - UF_EVAL_p_t edge_evaluator;7 l8 n' f" s3 k6 ^/ P8 P
- UF_CALL ( UF_initialize ( ) );
% p! X D. w% n) j/ g: m; Y - /* l3 p& q: H7 Y* X2 |
- Create new part "ufd_eval.prt".7 ^3 `, s) g4 u6 d! u
- 6 d& E5 \& U6 U% ?9 S( T' w0 ^
- Close part if it already exists.
, ] |- ^* F9 ?4 d - */
$ f$ B+ Y4 R- t$ N - {
' S$ r, L( [9 F3 \ - tag_t part = UF_PART_ask_part_tag ( "ufd_eval.prt" );
/ ?1 C1 o/ _, S2 w& c - if ( part != NULL_TAG )
$ `4 R _# {5 Y, D( S% k( x - {9 F" v* k( ]$ i% I* [ n
- UF_CALL ( UF_PART_close ( part, 0, 1 ) );9 P/ G. _! r7 [( p: S& k
- }
% U* z7 m* K, l; q8 q7 F4 S: |" M - UF_CALL ( UF_PART_new ( "UGd_eval.prt",
- w: P* T, ] g* x2 r# W. d& ` - UF_PART_ENGLISH,
* @* M2 r3 b; E% A - &part ) );9 Z7 x, x0 ^* s: c+ o) C$ H
- }7 q1 P2 O' r* M. b" t R4 X
- /*
1 W0 x9 {5 t3 A) B3 ]: L& {' \, Y) b - Create block and get edges. & O; K* j# m$ |! u5 e$ ^& |9 A
- */
5 f4 O4 J) ^$ A/ _& W t0 p' V$ x9 E - {$ w5 i5 H* J: y4 b' A
- double origin [ ] = { 0.0, 0.0, 0.0 };! }; A+ t# [- T9 m) t
- char *sizes [ ] = { "1", "1", "1" };
7 |# J% a7 a; h* V" d$ T+ c4 E - tag_t block_feature;
0 c: y5 l( q# T# R, I3 z -
8 u1 O" M9 G% f9 m - UF_CALL ( UF_MODL_create_block1 ( UF_NULLSIGN,
4 U( ?* @- `2 g- C - origin, 7 Q" f+ o) F. A+ F
- sizes,
* p1 `, t3 V* {8 ?5 b - &block_feature ) );
6 I( k2 w6 D" R, u& ?- |7 ]: g - {% B# }( L: Y _% P
- uf_list_p_t edge_list;
0 h# r! B3 b8 `. L- k' z( U - UF_CALL ( UF_MODL_ask_feat_edges ( block_feature, 1 q6 y @- l0 n7 Z; [' M3 \4 B
- &edge_list ) );0 T6 n3 _; o+ C, G6 C3 e
-
3 ]2 P- W i9 \4 r - UF_CALL ( UF_MODL_ask_list_item ( edge_list,
& s& w0 Q0 M3 _4 E1 O4 Z - 1,
* f) I) c2 B( A0 z+ D4 d' P - &edge ) );
9 G9 K2 Y4 w, X+ |4 D) n - edges [ 0 ] = edge;
7 m3 O# L) z, L1 k - edges [ 1 ] = edge;& ] D/ {& O1 R0 @- I7 [( r
- UF_CALL ( UF_MODL_ask_list_item ( edge_list,
, U. q! W2 D$ Q9 @# } - 0,
, F' }# q* s, i. w$ A. J2 D - &edges [ 2 ] ) );
* A6 S A$ Q/ ]& X) o% |( f - UF_CALL ( UF_MODL_delete_list ( &edge_list ) );/ O% A# t" `( `- B8 G
- }
2 @: }/ s4 v! B/ Y; k- \! J" \4 d - }
: u( y0 T/ C% s, e) B+ z - /* + `5 @* N) W" {2 ]) O# g4 a
- Create smart line.8 T* M+ O$ h0 ^: ^0 W
- */
! z/ ]# f& l0 y! K B& t - UF_CALL ( UF_SO_create_curve_extract
2 w4 F% A1 r5 M - ( 6 ?5 S$ k* R1 r/ {
- edge,
/ m: s' Y( d+ [" O5 N - UF_SO_update_after_modeling, ' e: J& y; w: q+ J& V3 L
- edge,+ W: u' S) \" l2 W' t8 }) g
- UF_line_type, /* enforce line type */
2 m$ o+ F- A( N* ~6 ~. u - 0, /* no subtype to enforce */$ I4 P# q3 Z3 L& ^4 K
- NULL_TAG,/ ^' M: H- k, D& n+ X
- &line
" ?$ K1 U$ C. n$ F - ) );& X- l9 \( _' |
- 3 n: @1 L$ O9 b
- /* , [8 Q- j6 F# U- {% a2 e* l
- Create smart arc.
. Z6 Z" \% t# b* f4 k& O6 r - */
t8 m1 e, {+ s y1 S8 {6 B7 ~ - {
% p: ^$ H$ u5 d6 F8 O* _2 K" r - int i;
S% e9 {9 z! B% i - tag_t points [ 3 ];" O& r$ M" Y8 {- ~7 o+ l& j
- for ( i = 0; i < 3; i++ )# |; U& B5 S$ r% G; d+ k. W5 I
- {
+ }5 `" S+ U/ o3 x! y& e/ Y - char *strings [ ] = { "center=1.0", ( g& T# S1 F/ b" L8 S
- "start=0.0", [) Y: {5 b6 U6 B7 C
- "end=1.0" };
, h" k K0 d3 R D! m$ l6 Q, B - tag_t exps [ 3 ];1 A% h: k5 ?- o" n! \2 P/ k
- tag_t scalars [ 3 ];# u) r& L# Q. a: b
- UF_CALL ( UF_MODL_create_exp_tag ( strings [ i ], 9 Z" G8 \. n3 d! i2 O& N) \% h; S% ^
- &exps [ i ] ) );; \1 q8 d3 I& V8 Z8 ~
- UF_CALL ( UF_SO_create_scalar_exp 6 \# g, w7 G6 r! ^4 H" p5 Z
- ( 9 Q* I1 w1 {4 T# s9 h
- exps [ i ],
* ~; V5 `& f# ?" z+ N% I' r* j/ p' P - UF_SO_update_after_modeling,
3 Z9 i( R O; i( c0 @6 O; P - exps [ i ],
. J6 k- q/ n H1 V* d$ j - &scalars [ i ]
* j9 K& e% U! h- k9 k7 t) e - ) );
% Q: o9 u4 s7 \$ |9 O" q. ~ - UF_CALL ( UF_SO_create_point_on_curve % Q1 I* ~1 f( x" l% `; N
- (
' ^1 E1 G- V1 J$ I9 Q! g - edges [ i ],
; ?0 X2 `# {* s' v) F% \ - UF_SO_update_after_modeling,
1 D; Z2 X6 u! ^9 {, i; L0 { - edges [ i ],. f p- S4 b- Z( e- t( L$ N
- scalars [ i ], |- e; o6 L. V1 x9 L
- &points [ i ]
* i7 l: w* M& V4 l- ~: @ - ) );
7 \# ~: _ Q& y6 c4 q$ [ - }) x3 C9 _" B, M; X" C. R9 U
- UF_CALL ( UF_SO_create_arc_center_2_pnts % y; v) E3 s% W( [- ^6 |) [/ Z' v
- (
/ t2 Z! i9 H0 \8 Q2 r, n - points [ 0 ],
6 l& y0 @% @( |0 W - UF_SO_update_after_modeling,
! Y. u m) B9 j6 [7 e3 W' O - points,
8 D* I& x& Y2 x$ f - &arc 7 h+ d% L# j/ z4 e# L# P
- ) );
/ I+ }* b6 ~$ X+ m6 ] - }
5 G5 \4 q3 p& v$ \ -
* C% ?5 [8 |: A/ Z - /*
, R* p0 k* i8 n$ ^+ f8 B - Smart objects are created as invisible objects by
: e2 Z$ H0 I+ }0 ]1 v) \ - default. UF_SO_set_visibility_option ( ) can be `: d3 v e+ Q, O
- used to make them visible in the graphics window.
# t" [& s* t- Z5 h; y - */
/ O" X ]8 v2 S( t! t T% S8 K: g - UF_CALL ( UF_SO_set_visibility_option ( line,
% u2 `: Q; q/ V- P1 K+ c% A, R2 ^ - UF_SO_visible ) );. m5 x% k5 t. [9 v
- UF_CALL ( UF_SO_set_visibility_option ( arc, % u" N) f5 E) @$ _# K; d
- UF_SO_visible ) );2 o* _! B; k( N. U$ Q7 H( {
- /* ! A3 S1 u0 e8 b$ M: _
- Get line/arc/edge evaluators.
" O9 F1 V% [3 n- P4 ~ - */
0 E& U8 V4 M9 U5 ~5 S; N! U - UF_CALL ( UF_EVAL_initialize ( line, &line_evaluator ) );
. o+ K! s. P# P# d2 R+ A* g1 A - UF_CALL ( UF_EVAL_initialize ( arc, &arc_evaluator ) );2 o/ j7 D4 u" `
- UF_CALL ( UF_EVAL_initialize ( edge, &edge_evaluator ) );8 F' L0 X: D) T. G# z' [
- show_edge_points(line_evaluator, 10);5 X" ~ ] b; G) P0 ]* }6 J2 i$ |
- show_edge_points(arc_evaluator, 10);
" L8 k6 _- N" b8 e. N( \ - show_edge_points(edge_evaluator, 10);- M8 n) r2 l- d$ C0 i7 ^
- /* . c2 q4 m( C* C+ C
- Get line/arc/edge data.! N2 d/ X& L2 i2 l' ?- Q, T/ ?
- */# ^* F- G- F' p- ]# g
- {
* s2 p; s; L- p& d: U" |( J# _ - UF_EVAL_line_t line_data;
. }7 J$ f, f+ o n# `% k - UF_EVAL_arc_t arc_data;
, E: x$ ^7 `5 W+ O2 e1 F; V4 W - UF_EVAL_line_t edge_data;
4 N! x: R" _ w+ C - UF_CALL ( UF_EVAL_ask_line ( line_evaluator,
j: g3 u4 S3 l- ~- p - &line_data ) );
$ [& d A# e5 ~2 w ~9 |3 ^ - UF_CALL ( UF_EVAL_ask_arc ( arc_evaluator, & b3 M' w. O) R |: _
- &arc_data ) );
2 R7 f. o/ T; u1 p: O& o9 P - UF_CALL ( UF_EVAL_ask_line ( edge_evaluator, & h( O4 m8 ^+ L( v/ X& i
- &edge_data ) );
f) ?( `/ ?, M - }" T' X7 L, w! t* d
- /* ' n1 p! h) @% G
- Check line/arc/edge periodicity.
- s* }3 @# R2 W& o& x- ~5 r' ? - */$ l: _7 k/ ^" q1 W1 X
- {
- g$ S" e0 ~" u - logical is_periodic;3 i& ^+ W5 W# q1 Z& C" B
-
3 b, Z* J) }7 A6 y - UF_CALL ( UF_EVAL_is_periodic ( line_evaluator, 1 x/ Y$ N3 p. [% n
- &is_periodic ) );" P5 o0 I& V3 s0 |7 L
- UF_CALL ( UF_EVAL_is_periodic ( arc_evaluator, 5 h, \. F7 R8 {5 R, e7 h
- &is_periodic ) );7 x+ P8 s4 c, `( X" y2 o
- UF_CALL ( UF_EVAL_is_periodic ( edge_evaluator,
) Z& R4 c0 C! `: |1 c, i6 T - &is_periodic ) );
; M, D# i4 m) F2 }3 x: v7 B - }
& z2 u( p" H+ }0 ] - /* & U. ^8 r6 E1 N) v1 g; f
- Evaluate line/arc/edge.
/ a( ?" w ~' } - */2 v- e1 n D+ }) H2 M* D
- {4 Q. z- R2 M& E9 t7 G8 K7 [
- double limits [ 2 ]; - v" E8 g: F6 D2 l0 O! f- o. P
- double mid_t;! p6 t5 Y2 X' |& M, a8 E7 s6 C
- double point [ 3 ];3 x, [9 I1 @2 a+ u+ n% W, E9 R! u! A( B
- double derivative [ 3 ];' f" \+ T3 b2 I
- double tangent [ 3 ];2 V6 x' x0 R: J7 r5 ~. k5 T. u
- double normal [ 3 ];
. W: `6 F6 { F5 M' Z - double binormal [ 3 ];5 ^9 {% O8 s/ a u
- UF_CALL ( UF_EVAL_ask_limits ( line_evaluator, limits ) );8 S) @5 L. Q* @
- mid_t = ( limits [ 1 ] + limits [ 0 ] ) / 2.0;: d( S7 L0 u. ?& m: w
- UF_CALL ( UF_EVAL_evaluate ( line_evaluator, 8 k X8 B; S+ m
- 1, : _2 I ?- C w& p
- mid_t, ' y; U- E* w7 K" t& w
- point, , `3 z$ k- L7 e% E( C: I
- derivative ) );
! s6 ]! \2 q. \0 k+ r -
+ x- i' M. E1 ^* \ - UF_CALL ( UF_EVAL_evaluate_unit_vectors ( line_evaluator, & l; E" U2 ~( f1 i3 |" a$ T1 o
- mid_t, & Y* \% U9 x g2 o! Y7 e
- point,
# W3 ^0 s0 Z5 c4 ] - tangent, 1 C: ^7 Z3 e6 O* f# }
- normal, , H# ?% f& D2 [: X- Z- _/ M6 g
- binormal ) );. @$ c3 |, b& N5 v; A% w/ B
- UF_CALL ( UF_EVAL_ask_limits ( arc_evaluator, limits ) );
r6 l3 c* [9 C0 A* F) w/ F - mid_t = ( limits [ 1 ] + limits [ 0 ] ) / 2.0;/ z. w: Q2 c" F" [
-
/ s9 l! |: ?) T# V2 k - UF_CALL ( UF_EVAL_evaluate ( arc_evaluator, 6 N a( p- v* E4 N
- 1,
4 L" U0 z, B+ |) R; P# U$ t1 m - mid_t,
8 G4 Q0 O; G/ L0 k2 \9 L: D - point,
+ M3 o @6 S. f2 Y* ^ - derivative ) );
2 z X; l, Q' E) V/ W, z+ S - ; O" e X9 F; c2 Z* x
- UF_CALL ( UF_EVAL_evaluate_unit_vectors ( arc_evaluator, 7 e) V" K( T! Z* k. `
- mid_t, 1 R& c; A+ J1 W. n7 L$ w
- point, . n' [6 ^# T7 V5 J! B
- tangent, 5 T( J3 q2 z9 {0 `. e. F1 ~
- normal,
7 w6 Z% E9 x4 ^) i' b - binormal ) );
* ~% t8 G1 u7 x$ l$ d4 a - UF_CALL ( UF_EVAL_ask_limits ( edge_evaluator, limits ) );+ p+ o, c- N- Q5 ]. L+ P& o% @5 R) |- C
- mid_t = ( limits [ 1 ] + limits [ 0 ] ) / 2.0;
: X, M, w, y1 s% o% |* J5 g - UF_CALL ( UF_EVAL_evaluate ( edge_evaluator, t4 i ^8 i8 k/ J4 u4 g. d3 }
- 1, ) B* w1 L) N& I+ M5 f" G
- mid_t,
8 ^; S# M0 E7 @* e H3 J* ` - point,
7 `6 ^. ]) o( H - derivative ) );
7 T; g* U: |- g4 p' p* a8 T - UF_CALL ( UF_EVAL_evaluate_unit_vectors ( edge_evaluator,
( b/ g$ w$ P( c$ y7 t; \4 |' D - mid_t, # q8 R, l8 P" L) L0 m. D0 Z8 I
- point,
5 L- r( Z* `2 ]) k/ o1 G6 U7 O - tangent, 4 `: M7 k: u1 k4 C5 ~: L0 i
- normal, 3 z' ]6 p' Q9 v: ]8 L( I2 f; K) T3 Z- X# J
- binormal ) );0 z+ {! s! v( d, a: |( N3 g
- }/ V6 F9 F$ `7 O* ^
- /* % r: ]3 ^: d9 K5 R7 ]
- Check line/arc/edge equality of evaluators.
) e! p* ]! N7 X5 N* h0 o+ t - */
" s: L2 P e+ U$ V - {
) n* b1 y \& B/ j2 j - logical is_equal;
# Y- q' y4 h1 K9 D4 ?. @: t! S+ k - UF_EVAL_p_t line_evaluator_copy;
% C* R2 M) v& c/ ?- \6 R - UF_CALL ( UF_EVAL_copy ( line_evaluator," d' p, b* {% o& o& X1 Z; r& r6 n
- &line_evaluator_copy ) );2 t& u9 s6 B% C( y; b/ n$ J
- UF_CALL ( UF_EVAL_is_equal ( line_evaluator,* U3 D& M. z; p7 c8 ]1 G- }$ |
- line_evaluator_copy,
4 t ]/ ~1 d, N" t - &is_equal ) );
}) m0 w# a2 B, F1 c } - UF_CALL ( UF_EVAL_free ( line_evaluator_copy ) );9 Q8 B. _& y( }( M* a0 h
- UF_CALL ( UF_EVAL_is_equal ( line_evaluator,
2 m3 P; N0 H: B3 t* g0 A - arc_evaluator,
* U/ M; ~& r/ M, T5 ^0 i - &is_equal ) );' l0 y0 l; O5 n1 t1 Y
- UF_CALL ( UF_EVAL_is_equal ( line_evaluator, 4 [4 b! x+ l# p( r8 B, b
- edge_evaluator, % }, G2 ?1 R' K/ {! d5 c
- &is_equal ) );
! A" k- L0 t' J/ F9 \' K - }
0 a: v- s m. F6 |; L/ a- F - /*
5 |: H! t) ^% p - Check line/arc/edge type.2 _) }1 ^- S. _$ a0 E% \4 m+ w
- */- c) A8 T) E% U) B3 o
- {. w7 p+ S2 L) M& L0 v" W
- logical is_line;
9 b0 w: [* }7 V g, z4 L - logical is_arc; e. N" O H6 f/ Z6 `$ I- _; }5 v
- UF_CALL ( UF_EVAL_is_line ( line_evaluator, &is_line ) );) J! o+ ~% V, w
- UF_CALL ( UF_EVAL_is_arc ( line_evaluator, &is_arc ) );
1 l }4 F& n8 [# q9 h - UF_CALL ( UF_EVAL_is_arc ( arc_evaluator, &is_arc ) );: {9 {8 g$ q7 x* c
- UF_CALL ( UF_EVAL_is_line ( arc_evaluator, &is_line ) );! a2 r9 @6 R- l1 L) |% l
- UF_CALL ( UF_EVAL_is_arc ( edge_evaluator, &is_arc ) );
. R) W( P, T+ e, q; {8 \ - UF_CALL ( UF_EVAL_is_line ( edge_evaluator, &is_line ) );* g/ E/ k# p. S* H7 u- @2 T
- }( m5 a- M9 x9 ~ ?0 V7 T
- UF_CALL ( UF_EVAL_free ( line_evaluator ) );( p3 \' k$ H) _1 ^( f
- UF_CALL ( UF_EVAL_free ( arc_evaluator ) );
3 r" H% i3 @/ L: {7 p; X, H# H - UF_CALL ( UF_EVAL_free ( edge_evaluator ) );% {" k- f: s$ h6 p
- UF_CALL ( UF_terminate ( ) );, E9 j. O( G2 S
- }& M6 O" M+ {0 z. r% t8 f. p
- ; n2 T7 U" H/ X! o5 U- V) I( X
- /* This function will disply n_pts equally spaced along the* D# j4 `) r# S0 A0 S
- input curve.. p+ S) h. b- g9 m! G. q# e
- */
) N$ ]; I' _/ h3 W - static void show_edge_points(UF_EVAL_p_t eval, int n_pts)& E0 [7 J' k; `1 G$ p
- {
7 n$ s# Z( v0 e% E0 w - int ii;
& O9 y p0 f$ `& a! V - double limits[2], p, point[3], end_parameter, start_parameter;
W4 x- P' B, A- t9 Q% ` - UF_OBJ_disp_props_t1 t) u$ a0 q& S4 S
- attrib = { 1, UF_OBJ_WHITE, UF_OBJ_NOT_BLANKED, UF_OBJ_WIDTH_NORMAL,; S6 W* G2 h2 z; v7 C" X
- UF_OBJ_FONT_SOLID, FALSE};
. R, x# K; j6 {8 p5 Q - $ m0 n9 Z- ]) y( ]; v4 K
- UF_CALL(UF_EVAL_ask_limits(eval, limits));/ |; ?, h( b- _% a1 q& z
- printf ( "limit0 = %f\n", limits[0] );& D4 @4 L- D; e, b8 |! Z0 i/ \
- printf ( "limit1 = %f\n", limits[1] );% x) U' T; {0 R i, G; m
- start_parameter = limits[0];
- i$ a' g; f6 U ~2 g9 @ - end_parameter = limits[1];
% p1 M6 {" `1 o) f9 v$ ?; n5 h - . L) S, |6 K6 @' c( {
- for (ii = 0; ii < n_pts; ii++)
: h8 l3 H& C- A* s& E9 z2 A - {$ K: g) K/ o. c
- p =start_parameter + ii*((end_parameter - start_parameter)/(n_pts - 1));& f& d. n! I) C- @
- printf ( "evaluate = %f\n", p );' Y$ f2 T/ ~5 y, X
- UF_CALL(UF_EVAL_evaluate(eval, 0, p, point, NULL));
3 ], B8 |' T8 |& o: g/ i% e - UF_CALL(UF_DISP_display_temporary_point(NULL_TAG,/ T7 S- J7 S! q* @* @2 d
- UF_DISP_USE_ACTIVE_PLUS, point, &attrib, UF_DISP_POINT));6 r' [2 G! \' c$ U p
- }
) D0 j% M8 c4 O$ H! B - , h* t5 \- D/ d; ^
- }
( F |+ C i! `% s- V, k' A! A
复制代码 2 w, k* L' `: E N7 w
+ D0 E$ }: X$ C/ T8 V: N; F$ P
' M7 \' ~' s: S
|
|