|
请使用QQ关联注册PLM之家,学习更多关于内容,更多精彩原创视频供你学习!
您需要 登录 才可以下载或查看,没有账号?注册
x
( L: Z9 l1 Z! Z# x6 I1 B3 o
* j! A" P* n% ?2 n5 {& O0 t; R6 Z! X7 V
- S& \6 }7 ?) U. T- /******************************************************************************
4 }$ o4 C9 G: N3 N0 g) B8 O - Copyright (c) 1999 Unigraphics Solutions, Inc. Y8 B0 B& v& T* h# U
- Unpublished - All Rights Reserved0 f7 V+ K0 j1 p/ x- y) [
- 5 Z' T7 L9 E4 m
- *******************************************************************************/
# J8 f3 f1 P2 ]$ j; [0 C; ~ - /* This example demonstrates the UF_EVAL api for lines and arcs.
# ]) h/ F1 y" E, `, E - Some of the UF_EVAL routines operate on an evaluator: P8 i( s0 V# p, \: [
- independent of type while others are type dependent. No longer use4 y) v+ h+ V. K9 |0 l. N/ f) ]
- UF_CURVE_ask_curve_struct ( ),/ Q# r5 O$ {7 \" X8 ?/ z+ M. h- N' s" n
- UF_CURVE_ask_curve_struct_data ( ) and" X! V# P0 ]3 z: U1 m `
- UF_CURVE_free_curve_struct ( )
4 J7 `) |, D/ u: ^: L6 L6 M( } - */1 r+ ~$ [% m* ` }( S+ V6 e/ `
- / C8 S: P& U$ m/ Q- h" J
- #include <stdio.h>6 h9 |. Q* r3 ?$ R+ R3 T
- #include <uf_object_types.h>; N2 P0 P4 ?2 {+ W# ?$ l
- #include <uf_curve.h>
1 {8 z0 }7 v% r( m4 j7 p1 h - #include <uf_eval.h>+ b% a/ }5 L. P. K% n
- #include <uf_modl.h>
8 s, F9 R9 T* |9 K6 O3 T9 e! O- h - #include <uf_part.h>
d1 b: }: X% ?6 |' ^ - #include <uf_so.h>) U5 l- S3 u+ E6 v
- #include <uf.h># V' U% b% d4 {0 B7 Z! r
- #define UF_CALL( X ) ( report ( __FILE__, __LINE__, #X, ( X ) ) )- U! Y6 A) E5 z! C
- static void show_edge_points(UF_EVAL_p_t eval, int n_pts);! G; O1 s6 o! ]: T) W0 M6 u- E
- /*---------------------------------------------------------------*/( n# w) s4 A% g; G0 I
- static int report ( char *file, int line, char *call, int irc )+ P8 I& i) B' [0 M; p S
- {
. C- v7 i: P: Y3 @. _ - if ( irc ): d* V' U; n$ }% U
- {9 V2 |; y6 B* K
- char message [ 132 + 1 ];
' m$ W8 ]0 g3 i, j) I - printf ( "%s, line %d: %s\n", file, line, call );
! i" m4 m) K* ?: u9 \ - UF_get_fail_message ( irc, message ) ?
" S2 R4 S0 x& a8 O6 N, w/ L - printf ( " error %d\n", irc ) :) ?% t+ t% d8 C; i; ~( v
- printf ( " error %d: %s\n", irc, message );
9 n& U0 r1 P8 D2 l - }. f0 G$ v2 n- Z" j- Q
- return irc;
; Q3 n7 J# O, k- T- I( G - }
: o( u! s. k4 j, c5 C - /*---------------------------------------------------------------*/
/ p9 @# b t! D+ } - int ufusr_ask_unload ( void )4 c5 e( e. n; `1 ?
- {' Z7 A& H, I! R9 a
- return UF_UNLOAD_IMMEDIATELY;
2 S' u+ Q- h6 g* |; w - }; J! j5 K) O- h' {
- /*---------------------------------------------------------------*/
* J' p0 N) {) l* N! v1 y - /* ARGSUSED */
) W; U6 f2 {) z1 |' q( { - extern void ufusr ( char *param, int *reTCod, int param_len )* f0 Y5 T `& Y D- W c
- {+ i! H; n4 A# k I% S/ C
- tag_t line;4 I+ r* m# s6 g6 [3 y% {5 V7 h0 k0 J
- tag_t arc;( z- `$ t* @4 d) p) A* Q
- tag_t edge;
6 |( a! K0 @7 P) W - tag_t edges [ 3 ];
8 p! m# o$ x5 n( ~0 l/ H* y1 Y - UF_EVAL_p_t line_evaluator;
* R& B5 f0 \1 k3 ]7 j - UF_EVAL_p_t arc_evaluator;
0 W: K9 Q. v2 X2 X& X+ p - UF_EVAL_p_t edge_evaluator;
0 Y5 @, r; [9 B' ?% L! P - UF_CALL ( UF_initialize ( ) );. ?3 H( M( w: t; Q7 {* Y. j3 i, z
- /*
8 U9 H" i5 }! m( L5 G5 O - Create new part "ufd_eval.prt".
& a6 ~9 k* P& K! r! g4 X -
* K' ?6 P+ K- ^5 f" {1 \) O - Close part if it already exists.# q/ e; y% o+ E- k, L
- */* b7 E) } G$ D: `) I2 u8 h
- {/ G) t6 K% p3 W! x, l
- tag_t part = UF_PART_ask_part_tag ( "ufd_eval.prt" );
2 o- K8 J$ _* i3 s9 @" E - if ( part != NULL_TAG )" z! z! Y- M2 |6 U& w
- {
v5 G. @* \, D( C F3 H/ Z - UF_CALL ( UF_PART_close ( part, 0, 1 ) );
1 ]% U. G3 ^$ l6 ?) j- k - }! e, V% z: f3 E. q! |$ c
- UF_CALL ( UF_PART_new ( "UGd_eval.prt",
8 \. n/ l8 }% I/ e. [ O4 N2 Q - UF_PART_ENGLISH,
' |% u5 B$ W p; T& p - &part ) );8 i2 S; ]2 s6 {& A1 x H( L. v
- }
7 V) R- g' D! R9 ^5 R - /* 0 k v; W( p$ m2 z u& V# K
- Create block and get edges.
- e3 w# y( D( R; G, z$ ] - */
W# g$ H1 V2 ]& h3 y- `9 X - {/ g2 F2 s5 s4 _0 n( B/ ]6 S
- double origin [ ] = { 0.0, 0.0, 0.0 };
4 V/ }* U4 B b! o0 ^# x8 q - char *sizes [ ] = { "1", "1", "1" };8 n9 t3 I+ e( @4 S9 {# b% R. ^
- tag_t block_feature;# T+ t4 Q, S/ [7 W& w0 ]
-
" n" t9 F& H4 C/ c - UF_CALL ( UF_MODL_create_block1 ( UF_NULLSIGN, # \' e9 L* v1 q0 P
- origin, : g2 X- u9 O- k. K8 H2 _( |) |! x
- sizes, 0 y% W3 |: l/ G. o) P2 ?# m! q
- &block_feature ) );+ Z8 C, z/ d: r4 u% r
- {! t0 A3 A3 r4 I) X5 j# o% a1 a
- uf_list_p_t edge_list;9 \ } o% k# i2 Z( r
- UF_CALL ( UF_MODL_ask_feat_edges ( block_feature,
6 t+ Z1 i. L. a' _7 ?& r. M7 u - &edge_list ) );
6 R& ?5 B; {8 ~1 g: ?8 R6 o) k1 O7 s -
+ B" Y) _8 G1 d& W7 }6 x. } - UF_CALL ( UF_MODL_ask_list_item ( edge_list,
" |0 ^5 c8 b+ ^& p - 1,
. Q8 Y" c" ^) c. O - &edge ) );: \- m3 [# M; b% }! J8 ~
- edges [ 0 ] = edge;
) L2 I: c8 Q! a' G9 C - edges [ 1 ] = edge;. [5 ~% m4 `/ @8 x) U
- UF_CALL ( UF_MODL_ask_list_item ( edge_list,
7 T/ @7 f! m: z) E2 d - 0,
" D2 W/ |+ w9 k- Q, p - &edges [ 2 ] ) );
* _5 w2 h8 t3 |$ F% Q - UF_CALL ( UF_MODL_delete_list ( &edge_list ) );5 D. A2 R$ S% z7 k4 R
- }' p( z; p0 `# e/ n7 ]
- }' ?2 t6 D9 F% f, T$ {$ }. }+ o
- /*
& F: r) |" J/ K3 ~* M - Create smart line.0 W8 f9 m ^9 _/ r6 o
- */: X W) q! N! T3 e/ {- Q
- UF_CALL ( UF_SO_create_curve_extract
( u1 a- U2 b+ u i& v7 @, R - (
" d u" w' B& G4 K$ _ - edge, 0 g9 W ^7 S* j
- UF_SO_update_after_modeling,
% {% l. v5 w+ q* m - edge,
0 ?3 F+ k: v+ N+ V) Q - UF_line_type, /* enforce line type */
/ \" ]/ m Y# R0 d/ P" J - 0, /* no subtype to enforce */
u% b9 ?" N% C# y& N3 O - NULL_TAG,4 J2 T* L6 V, i
- &line
- V. n% q. `( l, X% i - ) );
0 C, ?+ K2 E/ J5 h - - {7 ?) L% o2 \+ ?9 |8 X9 j' v5 G
- /* " N2 H% O# Y! n/ @' K( C8 C
- Create smart arc.% _$ X+ x+ k$ Q/ D
- */
* a* U2 V1 B8 e' L! g+ |) Q% p% t7 N - {, A# x7 ~, @/ P5 F" {
- int i;
7 j8 Q1 ]' {# f: \ - tag_t points [ 3 ];
1 S" \. h1 s( p7 H [, D* K - for ( i = 0; i < 3; i++ )$ c% n/ _7 H, C+ j1 S
- {; t1 b7 ~7 c) j4 Q) s
- char *strings [ ] = { "center=1.0", 7 d- `' Z% v8 J# u# e
- "start=0.0", ! n+ A- ~2 T# a! r4 V
- "end=1.0" };
) A0 P! v$ |; z4 s) ^, W - tag_t exps [ 3 ];. m9 a) K5 h* I( i) Q% u) X, P
- tag_t scalars [ 3 ];2 q2 c" i- U- s0 v+ S: M& w
- UF_CALL ( UF_MODL_create_exp_tag ( strings [ i ],
8 k& ^0 O9 s* ?1 H: a - &exps [ i ] ) );
- E+ p9 m) S$ W; v - UF_CALL ( UF_SO_create_scalar_exp 8 h9 t6 Q' A5 n! _6 G
- (
0 Z' D) F; ]" ? - exps [ i ],$ r' K+ r# V3 j3 ]5 @
- UF_SO_update_after_modeling,
0 X$ g" T1 E+ p0 J - exps [ i ], 9 t+ H# l" r7 Y q
- &scalars [ i ]9 n& L9 d3 s, T7 V* R: \9 m
- ) );4 y; o! F5 }8 A r3 r) ]+ F8 s
- UF_CALL ( UF_SO_create_point_on_curve % H, z7 f$ X3 y( u6 C, C- f) t
- (6 p, o0 p% X& w% ?7 Y% R* l2 Y
- edges [ i ],
4 H) _( p5 h6 t+ t9 _6 r4 @" O - UF_SO_update_after_modeling,
2 m& L* e3 Q; |, C - edges [ i ],% O T) X2 C2 U4 g
- scalars [ i ],
& w. ?( \( ^8 w: o - &points [ i ]/ k5 \7 z' h$ p- K
- ) );
; e, m7 S' r$ M% e+ D - }6 X' [& l0 z6 ^8 f( Q6 s4 ^
- UF_CALL ( UF_SO_create_arc_center_2_pnts
, _+ g' a) N6 |9 l. p+ Q: P8 h - (
" }7 ~$ A3 r& ]+ E - points [ 0 ],
" f/ c; i+ }/ \/ x( c4 j" ^ - UF_SO_update_after_modeling,
! b9 i( o9 l0 H0 I! _0 H* Q+ g - points,
' r8 R1 A5 [: T0 `$ _; `! ~ - &arc
% w" Z3 Y) @4 ~7 p3 o - ) );4 w' v! z0 i3 k1 `, L& D' I/ h
- }5 Y3 k( H2 `4 E \$ H; r
- 4 u5 b; ?- D* ]9 L9 ^
- /* ! \/ Q8 g) i2 \" h/ I5 M3 ]
- Smart objects are created as invisible objects by
0 W# D4 i) G- @+ q& T8 R5 ^ - default. UF_SO_set_visibility_option ( ) can be
0 s8 G {/ P2 B - used to make them visible in the graphics window.
$ s; |8 K/ q; G - */
3 \; M* x7 N2 ^( `* L- Q# w - UF_CALL ( UF_SO_set_visibility_option ( line, / {5 r. A0 A/ E9 W$ A( ^2 ^+ |
- UF_SO_visible ) );8 c" K1 t' a' n; l& I- w& V. w! p
- UF_CALL ( UF_SO_set_visibility_option ( arc,
$ C, i- n* l9 N/ {! I& F8 @ - UF_SO_visible ) );
6 U7 `$ C; V- \$ }! } - /* 5 F4 k: {2 [4 `; _ N9 j
- Get line/arc/edge evaluators.
8 A0 C+ U& m; P; Z0 i - */* u6 {- _9 W2 [# N4 w
- UF_CALL ( UF_EVAL_initialize ( line, &line_evaluator ) );' s$ t( e/ O) e- f# }. g
- UF_CALL ( UF_EVAL_initialize ( arc, &arc_evaluator ) );$ [1 a% G6 T- ]4 S8 ]% ]6 |
- UF_CALL ( UF_EVAL_initialize ( edge, &edge_evaluator ) );1 ]9 L4 u) G+ o7 N X
- show_edge_points(line_evaluator, 10);
1 h% O8 L4 Z- Q, c" g, \( j0 a9 W0 B - show_edge_points(arc_evaluator, 10);
2 \ l) X- u N) u - show_edge_points(edge_evaluator, 10);* g3 w& h% }* g. T9 x* N7 `
- /* + u! \. x7 U, t* P& }0 x4 l, Q
- Get line/arc/edge data.2 w/ Q" P5 B9 E( O) i/ l! y% d
- */
9 T0 ?" |1 Q) T$ r - {4 B E) j0 E/ N3 S. @$ X* l, Z
- UF_EVAL_line_t line_data;% f; g6 I; ]4 A
- UF_EVAL_arc_t arc_data;
# S: y8 n# J$ p6 O/ {+ A5 [. x - UF_EVAL_line_t edge_data;
- L8 t) X- L1 @* [ t2 f$ } w - UF_CALL ( UF_EVAL_ask_line ( line_evaluator,
h0 q4 Q* G4 G. D# Z( j+ q8 S- Q - &line_data ) );6 r; g& S# x W, w4 u$ t; x7 V, z2 ]
- UF_CALL ( UF_EVAL_ask_arc ( arc_evaluator, Q& ~) i& g* f# ^/ @
- &arc_data ) );% s# L" d. w3 \2 m3 G
- UF_CALL ( UF_EVAL_ask_line ( edge_evaluator, & k- q J1 p# L' d
- &edge_data ) );& x o' `4 g+ J$ C9 a
- }
/ H |, u( g f* n% x2 M - /* / z* ]; W& z& Q3 r; z+ R: {
- Check line/arc/edge periodicity.
7 D& t% g% L1 E. G( Y: z - */ A0 t/ N O2 e
- {6 m q7 c% L+ j- ?6 I6 S" I
- logical is_periodic;
6 ~( L2 z1 \! E7 ^ - ) \% O( Y" _! x, p8 c
- UF_CALL ( UF_EVAL_is_periodic ( line_evaluator,
: g8 a! j! m! F+ \7 X - &is_periodic ) );5 s$ n% J" v" y. O6 I
- UF_CALL ( UF_EVAL_is_periodic ( arc_evaluator,
2 u9 L" T! B7 @8 w. e - &is_periodic ) );
2 k2 M/ D0 L1 b1 L r4 ^( a2 ]0 M+ f; U - UF_CALL ( UF_EVAL_is_periodic ( edge_evaluator,
4 \3 A m4 n4 T* i: B- q - &is_periodic ) );
; q: K5 j5 `& {: j7 s - }9 m7 {, n. O! p1 G( x: k6 e) ~
- /*
% q2 o% }( z; O - Evaluate line/arc/edge.' [% Y7 K$ j# O ^0 b, Q
- */, d* t7 a$ |3 g+ [) b/ r% b
- {" x2 e- ]$ B; C5 c
- double limits [ 2 ];
2 @, P) ?( r9 p: m$ u* ~. l - double mid_t;
5 L3 U8 A: ^/ l - double point [ 3 ];) a5 A4 i `) T% X2 G M& \: m! R
- double derivative [ 3 ];
2 }) l' P8 e M! {+ K! E$ f( E9 f8 M - double tangent [ 3 ];
& {9 U, i2 l( d- k% a, m2 q) l - double normal [ 3 ];2 n1 L H% t9 }1 a
- double binormal [ 3 ];
' ~1 c6 _& U7 N4 r - UF_CALL ( UF_EVAL_ask_limits ( line_evaluator, limits ) );) B; q8 E9 I- U* O
- mid_t = ( limits [ 1 ] + limits [ 0 ] ) / 2.0;/ H! @5 v7 m0 _: F% I
- UF_CALL ( UF_EVAL_evaluate ( line_evaluator,
1 p, ~4 d7 ?6 g$ T - 1,
9 K5 J) M- i( w; G, l - mid_t, ( Q; j+ V( w; r: m3 o, M
- point, 1 ?0 n6 Z c4 y
- derivative ) );
( g- e9 b6 |3 t. E( ~- z8 b - 4 E# l* W1 N; A4 F- D8 B1 |! B: x, ~) R: H
- UF_CALL ( UF_EVAL_evaluate_unit_vectors ( line_evaluator, ( Y8 r' h1 g1 U5 A# L
- mid_t,
& Q+ H; J$ Q7 x0 U1 M - point, # p5 V Y8 A! F
- tangent,
* d; x& I4 A8 G- p! Y1 X F! A - normal, ' b1 y& j" E4 I' n
- binormal ) );
: X" E) K9 ?8 y; H - UF_CALL ( UF_EVAL_ask_limits ( arc_evaluator, limits ) );! [# l3 I8 t/ D7 v, t* M
- mid_t = ( limits [ 1 ] + limits [ 0 ] ) / 2.0;* |7 l: m( B: x6 i9 e
- 1 x4 [' a$ E9 X9 \8 G' e
- UF_CALL ( UF_EVAL_evaluate ( arc_evaluator,
, ~; e" b4 c' P2 {) _ - 1, ! A; ]6 M7 u, y- A+ M; [4 r
- mid_t,
2 r2 m0 h) F' l8 a' ^$ P1 w - point,
: v% M1 R. w2 t; V0 Q* _ - derivative ) );
7 {( |' X1 n4 f( U - % z2 |! M3 j9 X& r. C2 z
- UF_CALL ( UF_EVAL_evaluate_unit_vectors ( arc_evaluator,
6 k! k! F6 L$ Y* ^. |* ` - mid_t,
6 |# t& t9 \8 y1 p, P - point, $ s: U9 U+ J5 D+ l
- tangent, ! r$ j% P7 N. ]7 E. z
- normal, $ u- \6 U& f' i% l1 v
- binormal ) );# Y I' l+ {, M) J
- UF_CALL ( UF_EVAL_ask_limits ( edge_evaluator, limits ) );. F2 R3 V8 [7 ^; W7 E2 T
- mid_t = ( limits [ 1 ] + limits [ 0 ] ) / 2.0;/ j0 l$ P+ k: f) Y9 ]* f
- UF_CALL ( UF_EVAL_evaluate ( edge_evaluator, % l$ `8 r! U" f7 k E5 A
- 1,
2 g" s. |- C+ i& P/ f - mid_t,
" c8 X6 \$ s8 s9 N$ a' l) } - point,
( U9 a, d& G9 K1 P* C2 B# r4 w* K! l - derivative ) );5 x& b! Z% L4 k9 L/ r& y
- UF_CALL ( UF_EVAL_evaluate_unit_vectors ( edge_evaluator,
( A' N7 u6 @! C( ]5 ], p - mid_t, 2 S. J2 a5 ^6 K( Y0 c) h
- point, 8 B \$ }( v2 D1 h+ t- [
- tangent,
0 _9 `* S) m& b1 o - normal, ) W# _1 u, S+ a% {$ M
- binormal ) );
( n0 P; p4 h- J9 ?5 v; m - }8 ?* l' r( C$ u; @: c" Z' L
- /*
% k1 V3 p7 c. Q: E6 `/ E - Check line/arc/edge equality of evaluators.
_$ ]: M9 `* e C" {3 A; G9 X; W - */
7 ]8 e. G! U Q! S4 U3 W, h - {. O& ~; `- d7 V$ ~
- logical is_equal;
6 h7 G" k( X9 N7 W6 k - UF_EVAL_p_t line_evaluator_copy;* ^$ @. t6 S6 t( k+ H- f
- UF_CALL ( UF_EVAL_copy ( line_evaluator,* W& j* c" m3 E2 m1 d: X
- &line_evaluator_copy ) );; w4 x3 o, f' b6 x& _8 c
- UF_CALL ( UF_EVAL_is_equal ( line_evaluator,
9 W7 {! m9 Z- Y9 y6 b7 T, o - line_evaluator_copy,9 z& E4 E- g: c
- &is_equal ) );
1 F) A/ q4 ~5 h3 C# x - UF_CALL ( UF_EVAL_free ( line_evaluator_copy ) );
; X% w* s% F) A - UF_CALL ( UF_EVAL_is_equal ( line_evaluator, 5 l/ j! R, G1 x$ j" o' q w/ h
- arc_evaluator,
5 j" T: D# L1 g" K& Y& m3 g, @ - &is_equal ) );' z1 i3 D0 @& ?+ [1 C
- UF_CALL ( UF_EVAL_is_equal ( line_evaluator,
1 V- B/ O7 d& B! ?( S - edge_evaluator,
/ a# \: G0 ]+ o - &is_equal ) );
+ K- t! T$ n; I - }1 [0 l, \- L9 Y+ |8 \( Z6 m1 B
- /* # k: H. k- R$ \
- Check line/arc/edge type.& @/ U! u. S0 ]8 t3 [$ I7 U0 p3 r
- */
+ Q! N# i% v& x: `, ~/ S - {
' |- o6 _( ?* _+ }6 ? - logical is_line;
6 c' H } \ o! ~ - logical is_arc;- q9 X* t: z/ ~+ d2 A$ t3 W g. m
- UF_CALL ( UF_EVAL_is_line ( line_evaluator, &is_line ) );6 l0 c0 ]; T) J2 o# l# [6 j
- UF_CALL ( UF_EVAL_is_arc ( line_evaluator, &is_arc ) );; j. Y1 P) I- O
- UF_CALL ( UF_EVAL_is_arc ( arc_evaluator, &is_arc ) );
% L8 T2 ~: t7 P - UF_CALL ( UF_EVAL_is_line ( arc_evaluator, &is_line ) );
. Y. \: ~" q# P' b% J1 d4 v/ S" Z0 b - UF_CALL ( UF_EVAL_is_arc ( edge_evaluator, &is_arc ) );8 T: Q( a+ o- s$ c# ~ d) n9 q+ p+ l
- UF_CALL ( UF_EVAL_is_line ( edge_evaluator, &is_line ) );
( }" [5 U6 T2 K" j+ B9 p - }
( K) `5 \2 a t/ I! F - UF_CALL ( UF_EVAL_free ( line_evaluator ) );
; V0 \7 u9 Z) U8 u - UF_CALL ( UF_EVAL_free ( arc_evaluator ) );
/ U5 I/ S! l$ d - UF_CALL ( UF_EVAL_free ( edge_evaluator ) );! w3 W; m% C, \
- UF_CALL ( UF_terminate ( ) );# m A9 f- ]5 o# N
- }
, i" {1 M8 N; E6 W
, E, k/ |; i0 V- Q( s C- /* This function will disply n_pts equally spaced along the
$ O/ W( n2 ~" X9 G. d - input curve.& r7 H0 D. c: ^* b& n" J& i
- */
0 P# M. q2 ?2 e3 J g - static void show_edge_points(UF_EVAL_p_t eval, int n_pts)
: G5 Q: C; U! T - {; n, s' g6 z: E) ^. V- w( ?
- int ii;
( n2 U, `: s8 J0 \2 d1 K - double limits[2], p, point[3], end_parameter, start_parameter; O2 R4 m C8 H. J5 t3 Q$ U. V
- UF_OBJ_disp_props_t; g0 l% T+ O+ F5 b1 H6 I8 K, @
- attrib = { 1, UF_OBJ_WHITE, UF_OBJ_NOT_BLANKED, UF_OBJ_WIDTH_NORMAL,) J# R. J9 P4 }; o2 j
- UF_OBJ_FONT_SOLID, FALSE};6 Z& M h# z) {
& L$ }( r6 O F8 O) p, a) x- UF_CALL(UF_EVAL_ask_limits(eval, limits));
8 U5 ]' [: @, a, ?3 E# k# L - printf ( "limit0 = %f\n", limits[0] );
% V+ p, ^# s: N8 s* H - printf ( "limit1 = %f\n", limits[1] );* Y+ z* i" n% T/ S! t1 F
- start_parameter = limits[0];
, i/ Y7 N' h+ B7 O2 l: c! O - end_parameter = limits[1];
! n @% ]+ d! U2 p% z3 {
) p4 x0 _. a' h! L- for (ii = 0; ii < n_pts; ii++)$ w0 ~* ~% L e( C" q1 j$ Q. x' v$ B
- {
) Y/ k+ g& B6 q- S" s - p =start_parameter + ii*((end_parameter - start_parameter)/(n_pts - 1));" b% R0 B. ?! l; Q8 U) d9 g
- printf ( "evaluate = %f\n", p );
& |- k, y' a1 ^) E% K - UF_CALL(UF_EVAL_evaluate(eval, 0, p, point, NULL));
. ?$ \/ o$ ^1 @ - UF_CALL(UF_DISP_display_temporary_point(NULL_TAG,
2 b2 b) b1 N7 n1 N+ x5 m - UF_DISP_USE_ACTIVE_PLUS, point, &attrib, UF_DISP_POINT));' |* d: M+ J" X% ~7 q
- }' K- Q! `/ G# X/ e6 S
- + L5 ^3 ?) B3 j) p$ n0 a4 \
- }
7 K& D+ x6 ^9 Q( P
复制代码
- `9 u, Z% `% Y- [
! I6 ~/ \9 u9 b6 \; j) U7 C0 z7 r* w# O( T* ~
|
|