|
|
请使用QQ关联注册PLM之家,学习更多关于内容,更多精彩原创视频供你学习!
您需要 登录 才可以下载或查看,没有账号?注册
x
# P, r' p n/ P* x+ S, X
& b7 o$ c& z% }. p7 J
: H& a9 ^' M6 r
; E" ^3 V2 Q& b2 w) h8 q0 N8 L; E
- /****************************************************************************** k# i p8 J* \9 y! Y4 e
- Copyright (c) 1999 Unigraphics Solutions, Inc.
5 t9 l. G+ [! n - Unpublished - All Rights Reserved
+ H; A# D* M( @& C$ Q# j - ( F$ w/ p% I( B* Z0 x% V
- *******************************************************************************/
8 X" _& m8 y5 b F# g; I" m - /* This example demonstrates the UF_EVAL api for lines and arcs.. `2 p4 R: I" g; B6 \2 G- m1 n& b
- Some of the UF_EVAL routines operate on an evaluator4 p: k" j w( [+ }6 Z, o
- independent of type while others are type dependent. No longer use. G& J v E& U; p
- UF_CURVE_ask_curve_struct ( ),
9 v/ y8 ?5 g; v2 _ G2 ~* I - UF_CURVE_ask_curve_struct_data ( ) and/ m: A9 Q# i5 ?+ w9 ]
- UF_CURVE_free_curve_struct ( )
" o m- Z0 ?0 P - */
/ S% P: t2 J% }8 ^ - ) x A$ ^6 B$ Y5 ^3 w
- #include <stdio.h>
: Q! L! I- ]- S2 y* {% b1 q8 U) t - #include <uf_object_types.h>
! g1 }1 i' d8 n6 a9 b' l D' s+ o - #include <uf_curve.h>& V' v `/ @, d. S' W
- #include <uf_eval.h>/ V5 a! D7 G% ^# B- Y
- #include <uf_modl.h>- q) a% o& w" I# f8 \! l
- #include <uf_part.h>$ @% C! g& B4 J9 }5 a
- #include <uf_so.h>% f3 k; c# d1 _) A1 O8 Y
- #include <uf.h>
. v/ g7 h2 p) e2 N& G - #define UF_CALL( X ) ( report ( __FILE__, __LINE__, #X, ( X ) ) )
: B) U5 W) r Z - static void show_edge_points(UF_EVAL_p_t eval, int n_pts);
5 M- W8 w. \% z% `1 B - /*---------------------------------------------------------------*/
; r/ W7 w, P% s# I9 R - static int report ( char *file, int line, char *call, int irc )
S: Z( v* j" ?7 B+ E0 i - {
1 `, F' o% N3 t: i8 w: E - if ( irc )
# ?8 b/ H+ ?- l. e7 } - {
8 O9 u1 X5 X8 o) E" E - char message [ 132 + 1 ];; e+ T/ s C1 e1 Q$ r
- printf ( "%s, line %d: %s\n", file, line, call );9 S0 H% x8 d( a& Z) i8 b3 J2 M
- UF_get_fail_message ( irc, message ) ?
2 y$ m! s4 I0 l7 {, t - printf ( " error %d\n", irc ) :
, R/ o2 C0 k7 V - printf ( " error %d: %s\n", irc, message );
- T9 Y7 n5 a$ Y$ _+ x - }
6 f) L$ i7 z& [3 _( J& s - return irc;7 m6 Y1 v: O. z
- }
- U# q& B2 \! W - /*---------------------------------------------------------------*/
& C' p& b$ _# ^5 N - int ufusr_ask_unload ( void )( J' {9 R! O$ U: w
- {
) F8 S3 r& H8 G4 |, u. S) X4 G4 r9 ` - return UF_UNLOAD_IMMEDIATELY;2 O& ^8 Y" G% I1 x& ~& [
- }, j$ p+ X; ]/ ~8 R) z8 L5 ~! H+ m
- /*---------------------------------------------------------------*/1 h* |( X) y! m8 r, M1 C
- /* ARGSUSED */5 G( I. F; U4 H& Z
- extern void ufusr ( char *param, int *reTCod, int param_len )
/ @4 ?6 Y/ X" z8 X* T/ q4 A - {
3 n3 K1 c( Q; X! ^" f: @4 C! F - tag_t line;% M( _0 [5 V! {3 J' y7 B4 U8 M) n
- tag_t arc;1 L/ c% H1 k$ U2 A+ R U
- tag_t edge;& }5 U- F8 S* x/ o/ l
- tag_t edges [ 3 ];# f5 B! x" f: c. S/ T
- UF_EVAL_p_t line_evaluator;
3 ]( S( Z( A* c. v/ G, r - UF_EVAL_p_t arc_evaluator;* Q% A& }: R2 l2 n
- UF_EVAL_p_t edge_evaluator;$ W, i" C" K4 V# ~- u* a$ B
- UF_CALL ( UF_initialize ( ) );1 f$ E4 a4 h# L, o0 G. d
- /*
. G1 u+ y) r& g/ E$ ? - Create new part "ufd_eval.prt"." ?% m( e7 t, q5 ^. q0 e
- ' s( I9 _' i5 H9 h2 y+ G" k) O6 X
- Close part if it already exists.2 p$ b# R5 T) Y% X; o9 u
- */
- z' L3 H+ w" x4 x. O {) I A - {3 _" f2 L( J3 L( n6 C7 _, M; J
- tag_t part = UF_PART_ask_part_tag ( "ufd_eval.prt" );
7 K- A1 _& s) [ - if ( part != NULL_TAG )
- L) q5 @& R$ C. @; c5 e- u- A - {. E' _0 Q& }# v4 e
- UF_CALL ( UF_PART_close ( part, 0, 1 ) );9 A; V9 x' z: @' m, }' n& D7 g
- }4 v# u1 z) S N
- UF_CALL ( UF_PART_new ( "UGd_eval.prt",
7 f1 U* M$ \4 I6 K2 c& r - UF_PART_ENGLISH, , ]$ R& F8 ^$ P9 B- t+ M
- &part ) );
6 W, V" E$ n) T2 r+ { - }9 x* U* f) V4 h
- /* 0 | U5 C1 f0 ] m3 n
- Create block and get edges. 4 e* a2 X# v3 B: y& s( ]$ b# h! U
- */
7 T& d3 M, u/ Q6 O1 W - {! F6 x( V+ B2 A6 @
- double origin [ ] = { 0.0, 0.0, 0.0 };* y2 T* P6 B) }1 U! x- P* u
- char *sizes [ ] = { "1", "1", "1" };
; \5 W% ^# ^0 p - tag_t block_feature;
! A, t7 s, J& k9 E E0 q9 @ - 9 w7 E, r7 @, B0 G4 _
- UF_CALL ( UF_MODL_create_block1 ( UF_NULLSIGN, . {( \4 F# x1 l: W+ j5 P; o
- origin,
" H6 Y1 Y1 d7 L3 |6 {, Q - sizes,
6 f [# Q% w0 G - &block_feature ) );
+ A" J1 @% A# D, b8 z% e4 | _. k - {+ }7 D3 n J* |% `/ W. F9 v9 L/ }
- uf_list_p_t edge_list;
4 G9 R7 z B) {" Z: q2 j; u. c - UF_CALL ( UF_MODL_ask_feat_edges ( block_feature, ( J+ C. S. A9 O% c. X
- &edge_list ) );
; r8 f& H% P- A- V$ r( H2 I8 n3 A -
1 i5 R" b. @% g- C3 y( g6 Q0 Z$ f- [ - UF_CALL ( UF_MODL_ask_list_item ( edge_list, % B' H. ^$ h$ f: W; ]
- 1,
6 f' i1 i4 |- h* O9 v8 I - &edge ) );
3 _: K! m% o) R3 M# c( \! O - edges [ 0 ] = edge;8 q- ~6 s0 g3 y/ {/ W' `2 x
- edges [ 1 ] = edge;, z; `# T/ N: o# @% M/ b; T5 a
- UF_CALL ( UF_MODL_ask_list_item ( edge_list,
) b9 x2 C1 I" M( U7 W( ~ - 0, 1 N ~& S. n) Y. Q
- &edges [ 2 ] ) );4 K# Y# e- c6 {# ?
- UF_CALL ( UF_MODL_delete_list ( &edge_list ) );( y( M. m* J" A, [" m
- }
7 x6 c6 @# O) f; P3 ` - }
1 R0 ]( y* F) Y - /*
0 f; L3 ?: e: v4 f/ S* A. R - Create smart line.4 b" ^& t4 m: b4 {4 c4 S$ q
- */& ] G- h) f7 [4 k. ?% a
- UF_CALL ( UF_SO_create_curve_extract 4 X0 Z, w9 D$ B* T, l2 {% `
- ( ; t, f. x3 E; H& j
- edge,
3 N" w' K' D1 W, \$ s9 N$ d - UF_SO_update_after_modeling,
: s: V. x( P: y - edge,
7 n0 S4 H" q- y6 z# Z1 ~ - UF_line_type, /* enforce line type */2 i7 q& N: D1 v/ D
- 0, /* no subtype to enforce */( ~8 a! a9 }4 O$ l
- NULL_TAG,* |# _# x& W0 f3 T$ ]
- &line
! m1 l1 d. y/ { - ) );4 }# f8 B& G. _7 y2 C% y1 f$ [+ x
- i2 x! c# u8 }% X; C
- /*
3 q }) x T' g+ f6 M - Create smart arc.1 u x. K, U8 R2 ?* {: _/ X
- */
0 k8 |% w" U2 g9 \# n9 t - {# i9 y8 O, e/ N( A5 ^8 w
- int i;
( g! j+ j3 l0 I - tag_t points [ 3 ];
. ?* N6 f0 s% @3 @6 m6 ^/ m - for ( i = 0; i < 3; i++ )
M! T6 i" n- i5 l/ d - {3 T: V, V, R; z# {2 D
- char *strings [ ] = { "center=1.0", . R* ~' H: _3 M/ g$ h
- "start=0.0",
6 g, ^. d J2 |3 W3 m/ K2 y0 U - "end=1.0" };
& W; v; X! I+ k* o) L' z" E - tag_t exps [ 3 ];8 u+ n" l# S& R# U7 ?
- tag_t scalars [ 3 ];# T9 q5 L! y, S7 l I
- UF_CALL ( UF_MODL_create_exp_tag ( strings [ i ], & W" ?" ~" q% {# [& A
- &exps [ i ] ) );
' Q1 g; ^: H- E5 S. N - UF_CALL ( UF_SO_create_scalar_exp
% m3 b- m$ L1 K# ]# }; g - (
! |9 N9 e2 y% ^5 X - exps [ i ],
9 z' v0 n: Y6 X6 b7 l' f1 N( G - UF_SO_update_after_modeling,
W1 V5 ?5 E9 m& V! x - exps [ i ], * c! t( N& i% v( u$ p T
- &scalars [ i ] b2 k% C; ?2 W1 k7 Z' W0 i
- ) );% V& l* P& X$ F2 P5 \: v/ O, l: Z
- UF_CALL ( UF_SO_create_point_on_curve
0 {: F9 p8 a6 P0 @1 p - (* j% m& z1 z; ~0 p3 h
- edges [ i ],+ [2 }# K# H8 x' ^
- UF_SO_update_after_modeling,
7 H* T1 h& T) M1 i& r - edges [ i ],5 I8 C% f8 k) M3 z" `
- scalars [ i ], . @: R" L4 r, g' j4 J$ P" c& ]
- &points [ i ]& k- p( Y$ `0 R$ t. L) e* h( B# g* B
- ) );2 g5 m$ {9 D* L; I
- }
- g c2 Q8 q1 l5 `$ G8 i - UF_CALL ( UF_SO_create_arc_center_2_pnts 8 h. f' Z* B; J8 [1 ^
- (
+ B/ k5 |! i/ Y6 A. J8 @ - points [ 0 ],
1 I$ [# R9 F3 V - UF_SO_update_after_modeling,
+ v2 C* ~3 Y1 S - points,
2 x2 F' P2 M. M$ s" h" g1 S8 L6 T7 o - &arc
& l# q+ n4 y+ G" e! w - ) );$ E" [8 \% ~* o# u
- }* D& }, n+ o0 H3 e
- ) C, M; x2 a: x. s
- /*
- D! ~$ @; T( u$ N - Smart objects are created as invisible objects by
6 r$ y; ]9 v4 {. x( s5 C - default. UF_SO_set_visibility_option ( ) can be + U3 ]4 n9 K6 a2 ?3 \, N8 n
- used to make them visible in the graphics window.0 _) |$ V+ g A2 F' @6 |
- */0 G* a" }- Z+ M( v% |
- UF_CALL ( UF_SO_set_visibility_option ( line, 9 q7 U8 t) g ~. S3 F* M% ]
- UF_SO_visible ) );# @; b( A4 y- j; g% ^6 k$ K
- UF_CALL ( UF_SO_set_visibility_option ( arc, . j6 a. `! g s- \, e- K
- UF_SO_visible ) );
" l& I9 C- v+ u0 p1 l - /* ) _! p: f' v/ p& M. ~
- Get line/arc/edge evaluators.+ @9 p+ d3 m- W, g" e9 r! q8 t
- */
6 }) z# U! `* Z7 z - UF_CALL ( UF_EVAL_initialize ( line, &line_evaluator ) );" b0 p3 S! p$ \1 H; D. \
- UF_CALL ( UF_EVAL_initialize ( arc, &arc_evaluator ) );) D: X' J. K4 `) V' j5 j
- UF_CALL ( UF_EVAL_initialize ( edge, &edge_evaluator ) );6 Z4 m9 `7 E2 L0 x# W, w5 z! C
- show_edge_points(line_evaluator, 10);
* ^$ s& Z: F: v) ?: o1 h - show_edge_points(arc_evaluator, 10);9 h) K Z5 q7 e- x5 u- M: B
- show_edge_points(edge_evaluator, 10);
' C% N. B5 d! r6 F; I - /* ! [1 E% P. m' J1 C
- Get line/arc/edge data.2 x" c, ]- P5 j5 {- I6 ?
- */
! {' g' ^$ m6 _+ B" e9 k6 \4 _ - {9 l; E+ I& L$ c0 g
- UF_EVAL_line_t line_data;
/ p- Q8 G( I5 l - UF_EVAL_arc_t arc_data;
: {- R* v* x( ~+ E# A8 T - UF_EVAL_line_t edge_data;
* B; ]# s2 L1 p - UF_CALL ( UF_EVAL_ask_line ( line_evaluator,
3 H" T# [7 @$ f a) }0 p7 } - &line_data ) );
( s- Q9 q/ M" R/ M6 ?9 N; S - UF_CALL ( UF_EVAL_ask_arc ( arc_evaluator,
3 Z/ g& J a$ {7 |+ _) H5 p - &arc_data ) );
) X. ~" e* J( C3 P - UF_CALL ( UF_EVAL_ask_line ( edge_evaluator,
+ {% K7 _+ C6 q0 z! {' u, } - &edge_data ) );7 }# J% \* J9 T3 E. G
- }% z& W! n1 W3 `& g- \; e+ Z, `
- /* ; L! y2 w. O/ }0 r9 g
- Check line/arc/edge periodicity.8 I$ ~1 \/ J: t; N, _2 J. N, `# i
- */6 i1 D/ N* J% h) s2 g
- {
7 t# `& x; o7 q/ ]: d# e1 q0 E6 s - logical is_periodic;. V$ I* y: [8 S; B+ i1 J8 g3 @
- 0 ?% Q; y* X; t+ V" b7 @/ ~( Y
- UF_CALL ( UF_EVAL_is_periodic ( line_evaluator,
% x& R! H. O* U+ V; i+ F5 k. l - &is_periodic ) );
, y2 S9 ?) _: l9 K* h/ N+ N - UF_CALL ( UF_EVAL_is_periodic ( arc_evaluator,
- P& [: T% ^4 Z; F; } - &is_periodic ) );
: `8 y9 v& v0 q" S5 u. w) x' n - UF_CALL ( UF_EVAL_is_periodic ( edge_evaluator, ! K- G" x+ P' n- ?8 m8 `2 w
- &is_periodic ) );
2 \1 i% m4 E- i& {* G$ p% e - }
6 L; u2 V" Z- l: ]/ A2 A# H - /*
( \( ]3 m! D. r) q. H ^+ L1 z - Evaluate line/arc/edge. O/ l5 M/ R! q( r/ p w- S& Q
- */+ R4 F+ w+ H6 `: M& F; Z
- {. a5 K0 Z9 \/ t7 i# m* e/ D7 i( M
- double limits [ 2 ]; 9 ~4 X) L; R& Y1 u: H; ~6 R4 E
- double mid_t;
$ P8 h2 f8 h" i! T2 ~* i - double point [ 3 ];' i" C; F; w+ m: f
- double derivative [ 3 ];6 D4 N, y# z: [- |
- double tangent [ 3 ];+ T9 B7 h& F6 R6 w& e
- double normal [ 3 ];
7 D% U" N( C. J# m - double binormal [ 3 ];8 T% t9 N1 P. V& u/ V% T l/ r
- UF_CALL ( UF_EVAL_ask_limits ( line_evaluator, limits ) );
0 U/ n3 k* f6 U$ f) ~ - mid_t = ( limits [ 1 ] + limits [ 0 ] ) / 2.0;* S1 q, P* U9 H1 u" u3 ?
- UF_CALL ( UF_EVAL_evaluate ( line_evaluator, 8 x: e8 C8 ~# }/ ]0 l3 x
- 1,
: d2 ?& W: U8 d/ i - mid_t,
( K- [6 b# C! s2 b* V* a- [ - point, ) l! V% ^7 O0 o) J
- derivative ) );
7 d6 C) I) l1 P( E6 h3 k - 2 F+ S) u1 l' O6 J! ?. F+ S
- UF_CALL ( UF_EVAL_evaluate_unit_vectors ( line_evaluator,
( I% L, j) c0 X9 J& ?# S: z - mid_t,
' ], r7 o2 j i4 q" ^+ m& E - point,
5 b. Q& W7 g1 k$ P - tangent,
2 }! P* ~2 I# ? - normal, 2 O& S8 Z+ s7 G, c( K$ X, X) k8 c
- binormal ) );
0 d* N7 s6 ^# T - UF_CALL ( UF_EVAL_ask_limits ( arc_evaluator, limits ) );
4 U' p# S) {) }+ n/ k: y8 R3 w1 \( F - mid_t = ( limits [ 1 ] + limits [ 0 ] ) / 2.0;
2 n# |# w6 }/ g- b4 @/ p. m -
. c' L4 H2 x6 E3 B) w - UF_CALL ( UF_EVAL_evaluate ( arc_evaluator, 4 K4 F7 |' U, M/ k- I+ a$ O
- 1,
% {9 @5 C. B* C9 x% B: U6 z+ B5 r2 D8 T - mid_t,
) i# R8 E4 Y* p% C0 T# c% ] - point, 3 x. }& k1 F$ Q6 i1 q9 i
- derivative ) );! O: S* K) U- |: S. _# w
- " E. m8 w4 w' S- \
- UF_CALL ( UF_EVAL_evaluate_unit_vectors ( arc_evaluator,
- p0 Z' d1 \5 h$ @+ L - mid_t, k( |/ f3 ^ m- j9 O3 F( j
- point,
* q6 x; o) f& }# K8 J- M" ? - tangent,
; W4 Y. K/ T1 l7 ~) q) @ - normal,
8 f2 |$ N$ e" U& P4 R3 A% Z' Y+ D6 d - binormal ) );
$ H) P! X! s& T& v - UF_CALL ( UF_EVAL_ask_limits ( edge_evaluator, limits ) );: J1 C8 X7 _2 u" d) c& C/ G
- mid_t = ( limits [ 1 ] + limits [ 0 ] ) / 2.0;$ h$ d4 m) [( C
- UF_CALL ( UF_EVAL_evaluate ( edge_evaluator, : w( k M% }: W* P
- 1, 1 i6 ?7 y' M u
- mid_t,
) q/ F! o6 X5 P& b - point,
5 }5 @3 v* C7 U - derivative ) );
8 | z! d& k/ q6 C3 K - UF_CALL ( UF_EVAL_evaluate_unit_vectors ( edge_evaluator, 6 n O1 I& r# E4 y) R
- mid_t,
/ x& B7 u1 E+ l$ }, M9 n - point,
' L2 y8 ?- ? A5 Q - tangent, , \. I! k7 h2 [6 g0 O8 b$ ~
- normal, 5 p, i+ z4 e2 i7 P
- binormal ) );' S; V7 s+ j. y- w& I) P( T6 M) }) k
- }) Q1 Z2 h2 w9 T9 T
- /*
4 G- Z1 t8 q' z! {( a* J6 @ - Check line/arc/edge equality of evaluators.
/ s* z N4 ^1 q4 | - */
. g i. e" I% O+ Z# H9 s - {
1 s- T$ [! i6 i% K+ d7 G - logical is_equal;5 }1 o3 t( I3 n6 T& s
- UF_EVAL_p_t line_evaluator_copy;) b* ?. P T) Q0 y, l7 W# x& Q
- UF_CALL ( UF_EVAL_copy ( line_evaluator,
+ Y: l2 F2 _/ y5 V" ]# Y- C - &line_evaluator_copy ) );3 `, d' Z8 F, j- U9 k' L& U4 u! @
- UF_CALL ( UF_EVAL_is_equal ( line_evaluator,: B9 }& ?. K+ c: q; S
- line_evaluator_copy,
6 m( N9 z/ u1 [; U: E$ O* h, j' ~ - &is_equal ) );! L/ k! _1 ?% q0 h9 A
- UF_CALL ( UF_EVAL_free ( line_evaluator_copy ) );
Q/ ]4 S, {1 D* E7 @; k0 R - UF_CALL ( UF_EVAL_is_equal ( line_evaluator,
$ ?5 `: u; ^" l3 o - arc_evaluator,
) c2 q- @, d% Y5 |; M - &is_equal ) );: C% k* e0 Y/ ]( t! b O
- UF_CALL ( UF_EVAL_is_equal ( line_evaluator,
" g4 O- S/ @! I - edge_evaluator, : Z: H8 p: y$ [$ y. a: U1 n. u
- &is_equal ) );3 u8 V; m/ S- V" P0 F5 O
- }
. Z" J+ C5 }$ E: I2 [ - /*
6 ?& N0 x; T- F" b) I - Check line/arc/edge type.
2 Q$ S$ j8 m9 [0 ^- m9 C - */
; S2 i; S+ R$ w3 _: V - {
0 ~' m. g+ i) z0 e6 e9 K - logical is_line;
& W; C7 E' U( @& f( U& O - logical is_arc;
, b: H- e+ Y8 |) C4 j! r& d( T" j - UF_CALL ( UF_EVAL_is_line ( line_evaluator, &is_line ) );; [) e- i+ o% f: _
- UF_CALL ( UF_EVAL_is_arc ( line_evaluator, &is_arc ) );' E) K# z" H0 h9 u/ V
- UF_CALL ( UF_EVAL_is_arc ( arc_evaluator, &is_arc ) );
/ {7 p2 q. k5 F& o2 p$ O - UF_CALL ( UF_EVAL_is_line ( arc_evaluator, &is_line ) );
6 W3 o- B4 P0 L; n - UF_CALL ( UF_EVAL_is_arc ( edge_evaluator, &is_arc ) );0 Y# X% |3 A O# ?8 ~5 p
- UF_CALL ( UF_EVAL_is_line ( edge_evaluator, &is_line ) );
1 d Z+ R: v2 A/ c# T - }
+ |. e3 P& O! b, A4 }8 g( B8 { - UF_CALL ( UF_EVAL_free ( line_evaluator ) );3 u5 n8 _, i8 ?% j1 f/ s% \. U
- UF_CALL ( UF_EVAL_free ( arc_evaluator ) );
" ~) q3 M& c( [! p5 j - UF_CALL ( UF_EVAL_free ( edge_evaluator ) );
. s# e# P3 L6 |# E- u - UF_CALL ( UF_terminate ( ) );
# z# M' G3 d- t; ?+ n - }* l* l2 _6 I! E0 C
- ( z) F2 M7 A9 S7 X/ @; G/ G
- /* This function will disply n_pts equally spaced along the- y2 q; C' |. F' z
- input curve." `- u. _$ W. h+ k
- */2 d& P, p \3 M+ l! l3 o0 {
- static void show_edge_points(UF_EVAL_p_t eval, int n_pts)
8 |5 U- Q, V& ]. V - {# ~( H+ M% \- M' t
- int ii;! M4 c }" X2 o; }, O
- double limits[2], p, point[3], end_parameter, start_parameter;
2 L3 V( ]0 T U1 N: f5 V" M - UF_OBJ_disp_props_t+ B8 z: A. E) ~' r! L6 e4 @8 L/ Z
- attrib = { 1, UF_OBJ_WHITE, UF_OBJ_NOT_BLANKED, UF_OBJ_WIDTH_NORMAL,! j; ?' ~2 C3 |. g: z3 K$ e
- UF_OBJ_FONT_SOLID, FALSE};
( j7 X% C4 \0 n/ D* g7 w J$ K3 k: ` - 4 E' p" t5 X3 [4 s: e# ]1 _8 H
- UF_CALL(UF_EVAL_ask_limits(eval, limits));
+ M# c0 }' @4 l - printf ( "limit0 = %f\n", limits[0] );
; u6 f! t: a! [3 f, K - printf ( "limit1 = %f\n", limits[1] );9 ^) d# l* a: N8 t1 t! l$ W& A
- start_parameter = limits[0];
3 J8 y! I* Y, u6 [- g7 ?/ J - end_parameter = limits[1];+ j8 e- c) r4 ]9 e
3 z0 S# W9 Z E6 d2 \" c! G, f- for (ii = 0; ii < n_pts; ii++)+ i T7 l' X0 q% v
- {
3 N7 n9 \ K I. i6 j+ A' x7 ^ - p =start_parameter + ii*((end_parameter - start_parameter)/(n_pts - 1));
+ S: h; p$ M4 A/ t1 T0 W- _ - printf ( "evaluate = %f\n", p );+ I8 U6 g3 w+ i3 `& K
- UF_CALL(UF_EVAL_evaluate(eval, 0, p, point, NULL));
, d9 n ^" u5 S& e; R" h0 n8 f - UF_CALL(UF_DISP_display_temporary_point(NULL_TAG,
1 [5 E9 W. W6 F7 @ - UF_DISP_USE_ACTIVE_PLUS, point, &attrib, UF_DISP_POINT)); [8 \& x# T" k2 j. R
- }4 o" c, U+ o, u+ h6 a' G
- 3 e* P) J/ W A, r7 d* s: U/ q9 L
- }2 u$ w% ~& M! |* H3 `
复制代码 9 N! F! g6 Q/ k8 F" I3 C' x/ f
6 q; m6 A* ?8 V1 |/ c4 \8 N' a$ x' h3 B. U# i5 |& z _, [
|
|