|
|
请使用QQ关联注册PLM之家,学习更多关于内容,更多精彩原创视频供你学习!
您需要 登录 才可以下载或查看,没有账号?注册
x
1 |4 i$ S7 _, G) B6 C
/ ~. i& N2 W* p- S- u( Y0 [# c
7 q7 C) u5 S- d. f. h
' w1 B( I$ Q# C$ p4 H- /******************************************************************************; {7 [$ c. P6 a
- Copyright (c) 1999 Unigraphics Solutions, Inc.
4 q0 K1 J1 A3 d0 `3 k2 { - Unpublished - All Rights Reserved
" @ r3 L. F; p9 ?! R9 ` - : H; _: Y$ x6 X' m" J3 q- a+ W
- *******************************************************************************/
; W* {) k$ Z' q- i7 S* N - /* This example demonstrates the UF_EVAL api for lines and arcs.
3 e3 E8 x6 r: L3 }: M' V - Some of the UF_EVAL routines operate on an evaluator
6 t4 ?0 V" n! s) g0 c9 p - independent of type while others are type dependent. No longer use
4 e6 e% |, g* s N+ ]% N1 [4 W0 Z - UF_CURVE_ask_curve_struct ( )," b* ?* B1 P1 O! v4 F
- UF_CURVE_ask_curve_struct_data ( ) and" ], `. I) q7 ^0 J
- UF_CURVE_free_curve_struct ( )
; ~; W, J3 T6 [1 O1 J; x7 y- a - */
8 S/ |! E' M, { S) V) X |9 ^) w! ?6 i
8 e5 S6 ] E& |0 c* K$ {8 q- #include <stdio.h>4 z) O |4 y& F& _! q( n
- #include <uf_object_types.h> `9 w: ^7 l& m" k
- #include <uf_curve.h>
$ F- j3 p6 u+ Z; _) l - #include <uf_eval.h>
9 I( ]/ ]3 ?- V, w5 U, \/ t* i: { - #include <uf_modl.h>0 E6 }! ^- c7 `0 c4 R5 j
- #include <uf_part.h>
! C% d4 k1 r: ^) F) T - #include <uf_so.h>
7 ]% E' p9 k- A0 Q/ o8 B+ x - #include <uf.h>, ]' n4 s( T) i
- #define UF_CALL( X ) ( report ( __FILE__, __LINE__, #X, ( X ) ) )
2 S3 ^# w7 f# F+ J8 |* k - static void show_edge_points(UF_EVAL_p_t eval, int n_pts);
3 @5 W6 R$ R# o5 d - /*---------------------------------------------------------------*/
, b6 g/ [. X/ k# Y3 o5 t - static int report ( char *file, int line, char *call, int irc )# r2 ]. ~" g6 g
- { M3 F# g5 f* n+ s3 m4 b2 d2 a
- if ( irc )& h2 k0 n+ d7 L6 g
- { q. F5 f" Z7 m2 M! h: [! R' o
- char message [ 132 + 1 ];0 v. i: D, d# N8 T2 f" o/ [
- printf ( "%s, line %d: %s\n", file, line, call );
9 P7 [7 I: l6 x% p$ Z - UF_get_fail_message ( irc, message ) ?
' n$ B" |1 W2 Y6 D& @ - printf ( " error %d\n", irc ) :& a6 \ c" T1 j" v5 F+ h
- printf ( " error %d: %s\n", irc, message );
1 A# ?1 \$ Q7 z. H, {/ V8 A% I - }5 d) Y2 v6 D6 m9 \( m
- return irc;
( N8 I7 [. _ Y8 p( t m - }
- ]2 z1 Y! H u4 m8 g - /*---------------------------------------------------------------*/
( ^/ n- p! y7 ?6 K3 N/ E4 b. F - int ufusr_ask_unload ( void )8 J4 v/ Q; S" F9 m/ i `1 F5 P' P
- {4 G9 v7 S, Q' ~5 [3 k( _& I) ^
- return UF_UNLOAD_IMMEDIATELY;" j3 Q8 c( N% V ]0 x2 j
- }
4 P$ t _' S' ]7 G0 U8 Q% m8 a - /*---------------------------------------------------------------*/
1 O+ X' s+ f3 f7 y7 J - /* ARGSUSED */
) W* z0 w; s- ?2 x$ Y4 c% i - extern void ufusr ( char *param, int *reTCod, int param_len )
) s/ S1 H ~2 Z; a" d/ a - {4 m: m- o) G. x- I
- tag_t line;) u Z4 ~8 G, \: Z6 f3 Y e
- tag_t arc;
5 L* J6 K5 x c0 ^ a* Q" Q. P" `2 z - tag_t edge;6 h A* H6 F0 l% M
- tag_t edges [ 3 ]; I3 {! E6 n5 z( L: R
- UF_EVAL_p_t line_evaluator;3 R. _4 R d2 f3 ^; ~' M) y0 ~: |
- UF_EVAL_p_t arc_evaluator;; v3 }7 R( Y: ?4 x- p$ j
- UF_EVAL_p_t edge_evaluator;
! _/ k Q! M( G - UF_CALL ( UF_initialize ( ) );. Z: x) l3 |* D3 n( f
- /*
, B0 ]6 {- _( W& u' U) A4 z! @ - Create new part "ufd_eval.prt".# |# G. E6 L7 T5 j
-
0 p2 W+ l' N* q* q - Close part if it already exists.
: J: O% u, E; ~- Y% R+ U% [ - */
) u* \$ u9 y- I5 V" y - {
4 Q1 n* Q) n9 B4 } - tag_t part = UF_PART_ask_part_tag ( "ufd_eval.prt" );
9 [2 U% f% `" Y/ X - if ( part != NULL_TAG )* B- x# L/ U2 b, K, S4 q% e
- {
& c" ]9 D6 H/ }' h8 D; B - UF_CALL ( UF_PART_close ( part, 0, 1 ) );' i5 a2 q( z2 j7 K! c
- }
% c: V4 w# ^! r# \+ [ - UF_CALL ( UF_PART_new ( "UGd_eval.prt", # N$ L0 u6 y8 W& U
- UF_PART_ENGLISH,
, d/ g, u. L' z - &part ) );
( { H2 K* }' `" D - }
3 b @. C3 [$ `; o8 d8 X0 ~. C# f: r) T - /*
, W/ ~% u& |' l& q, [ - Create block and get edges.
) V) m3 @4 C+ y' v - */
( `. j+ d9 r' r! W/ f" @- m( L$ u - {- P7 K4 E( ~4 Q( y' [
- double origin [ ] = { 0.0, 0.0, 0.0 };
7 B j# E+ o, t8 m M - char *sizes [ ] = { "1", "1", "1" };
+ a* }( _1 D/ [6 J+ l3 Y, y - tag_t block_feature;: w/ c8 C3 B S: A" O
-
4 @4 k# k& f/ U; | - UF_CALL ( UF_MODL_create_block1 ( UF_NULLSIGN, 7 W m' q+ y7 }, u
- origin,
3 x1 U0 d$ l& ?$ v# y - sizes, + }, a% O) k$ v6 c5 c6 l
- &block_feature ) );) t2 q# K4 J2 p! j; M
- {
2 f' ?0 v4 ~6 U0 @; C. @: Z; G' a - uf_list_p_t edge_list;
+ T6 j' H2 _/ _% _3 @/ u6 G2 O - UF_CALL ( UF_MODL_ask_feat_edges ( block_feature, . ]) _! m" N0 H2 V' @$ D
- &edge_list ) );
U4 p4 v( I- u% ]2 A) k -
/ l2 a* |# |* ~4 p9 M- } - UF_CALL ( UF_MODL_ask_list_item ( edge_list,
0 n8 S2 K2 m( `0 I0 a- M; P - 1, 9 Y8 F0 ^# c. p! `( S& v
- &edge ) );
) \% M, }$ E- w5 S - edges [ 0 ] = edge;( | H) L Z+ f2 b+ C
- edges [ 1 ] = edge;
5 U* ~2 i/ f- y, C- ]7 }% M/ K/ c - UF_CALL ( UF_MODL_ask_list_item ( edge_list, ; J: d4 y0 e/ ~
- 0,
+ L$ b+ k; A' y' f y% n2 L' h - &edges [ 2 ] ) );
0 S( D* F* d( a0 F o3 b - UF_CALL ( UF_MODL_delete_list ( &edge_list ) );/ V |! m3 I ?
- }
' @2 A9 ]. Q( M+ h. J - }
0 F6 r' u% ?: [/ x, ^ - /*
6 P# f5 E, v* l - Create smart line.
, r# {" z8 w9 l: }; | X6 H - */
; B3 b8 e: ?" |1 v - UF_CALL ( UF_SO_create_curve_extract
$ N( I) G+ H4 c' V - ( # \ f1 C$ ?: P( ?
- edge,
7 A$ f4 t# s" F0 E! _% z9 L - UF_SO_update_after_modeling,
9 ?% u- \ [1 C3 {; d8 r1 w - edge,- ?9 a7 P: P: |4 X" r8 g( m
- UF_line_type, /* enforce line type */
# D1 B/ n: S8 M0 b - 0, /* no subtype to enforce */
, G! d6 k$ X: \- l; g$ |! I5 V - NULL_TAG,
0 E9 l& ?% ~- ^3 E. j- x - &line / n% P$ S1 G" i) ]0 s
- ) );3 J$ E7 T2 w, M0 U' o; p
-
. V7 @7 o' a! u) \2 l - /*
! @9 B' ~. ]1 X f# F$ ~ - Create smart arc.' o- o0 ]& I2 i
- */* F- K; Q1 Q- p! x" L* x( [' G1 s6 I
- {
( |4 F1 k& E, W3 v/ A6 D J - int i;$ j7 M q1 p6 S- I y+ ~% u3 y8 y( Q
- tag_t points [ 3 ];
9 B9 \) N2 O2 u( c1 W5 U0 B - for ( i = 0; i < 3; i++ )) N6 B( T0 j# W; j
- {: z' u% J# R5 f4 U
- char *strings [ ] = { "center=1.0",
+ L6 E- ~" c3 X, e$ D, z2 n. u& ? - "start=0.0",
! m6 V& H4 s$ r! |0 @1 P - "end=1.0" };
/ |- Q* A. t9 S* c0 q - tag_t exps [ 3 ];6 L3 x8 g) f7 ~. e5 F
- tag_t scalars [ 3 ];
2 H2 p; V5 j2 Q: d/ Q' B - UF_CALL ( UF_MODL_create_exp_tag ( strings [ i ], ! U$ n9 e, J- ~6 y4 i
- &exps [ i ] ) );
4 ?. M' i( n+ o! { - UF_CALL ( UF_SO_create_scalar_exp
0 j# S7 \% s% r9 F f# }2 ^ - ( $ u4 K& d6 G: n! W
- exps [ i ],+ b" o' h9 u6 r
- UF_SO_update_after_modeling,
) B/ O4 {) i, M% }5 S - exps [ i ],
1 P* ]& n/ e0 n4 H! } - &scalars [ i ]- M8 r" D7 x( C; d
- ) );$ z6 P5 P6 a4 y+ |( o; M. b
- UF_CALL ( UF_SO_create_point_on_curve % X+ V2 \) b- z9 } v- R
- (! v3 f# t9 N2 ?/ }- N$ {0 Z
- edges [ i ],
8 T2 C2 |3 [- Q$ B1 W H$ G- c - UF_SO_update_after_modeling, * X7 d! @+ A) O& M$ v5 D
- edges [ i ],
" |7 N" L k0 ~2 Y( k5 `0 R+ Q8 P - scalars [ i ],
, y% ?$ h. x" R$ {5 d/ [ - &points [ i ] w+ o+ v- }0 F' o1 }& H# u/ h
- ) );
* K1 C v8 O8 T8 Y8 `" a2 t - }
' s5 z' ?0 `" f6 Y+ M4 B8 E. p - UF_CALL ( UF_SO_create_arc_center_2_pnts 0 X: `4 g% g$ o$ A6 P
- ( $ @: n" A; i+ `' M- \
- points [ 0 ], 1 T1 x8 b: [$ p" n3 X% _
- UF_SO_update_after_modeling,9 j, L, u1 f; m1 k
- points,
w7 N/ M: g: }9 V - &arc ( V Q$ Z! T; z# A
- ) );6 u q) O( s7 a3 a( f5 Z3 V, p+ [
- }4 y! Y6 K+ n; e6 W/ U
- - ~' T: h) k7 z
- /* : e$ q* a7 m) D, L9 R
- Smart objects are created as invisible objects by ! {+ |0 N3 [# G' N
- default. UF_SO_set_visibility_option ( ) can be - u b# O+ l2 R7 \9 ?
- used to make them visible in the graphics window., G6 I" _2 J* M
- */
9 L) ?2 \. m6 C- h% l - UF_CALL ( UF_SO_set_visibility_option ( line,
! |; E1 @7 J( V: L7 u - UF_SO_visible ) );
2 [' E. `1 O1 o, k! \ - UF_CALL ( UF_SO_set_visibility_option ( arc,
( c7 |/ V* t# G; [( w; Q. t - UF_SO_visible ) );7 G% a, q U( k0 L3 G% v
- /*
' ~: r3 W) `. C3 U) @ - Get line/arc/edge evaluators.
' ?1 j$ }* t3 B8 u - */
! _1 X, E& m2 z( ^; k4 X" K - UF_CALL ( UF_EVAL_initialize ( line, &line_evaluator ) );1 d2 y- c' `/ n q% D9 z
- UF_CALL ( UF_EVAL_initialize ( arc, &arc_evaluator ) );4 @& I. {2 Z1 X/ d% X
- UF_CALL ( UF_EVAL_initialize ( edge, &edge_evaluator ) );
( p# h- k3 P* i - show_edge_points(line_evaluator, 10);3 u5 r- D) G5 V* O' z" c% e
- show_edge_points(arc_evaluator, 10);0 D6 r9 s& l! |9 U
- show_edge_points(edge_evaluator, 10);7 g& { x( Z+ s: k
- /* 7 ]: r4 F9 H7 C
- Get line/arc/edge data./ u% S! D& @( k. Z' K
- */4 V w+ K) G1 H! ^. f. t1 w3 Z/ o
- {
; }* ?% x4 R& {7 x - UF_EVAL_line_t line_data;3 r1 w3 w- s* F, E* c! `) m/ E
- UF_EVAL_arc_t arc_data;/ C, \; y: ]; o2 `$ g
- UF_EVAL_line_t edge_data;
% h7 ^. a ~1 Y5 d' u! W - UF_CALL ( UF_EVAL_ask_line ( line_evaluator,
4 G# O9 H. K) x" G( A5 N - &line_data ) );
% E- E$ ?: X% n& x+ R - UF_CALL ( UF_EVAL_ask_arc ( arc_evaluator,
/ b4 ^5 {. H7 T# f* r6 K V7 ]3 c1 }5 \ - &arc_data ) );+ a2 W, P) |5 W, ]0 r y
- UF_CALL ( UF_EVAL_ask_line ( edge_evaluator,
* u5 q; E8 U! B _- R - &edge_data ) );; x7 a& }% O& R( m" s
- }" h+ @8 I' |. e: Y1 G
- /* * J4 j9 r- S3 j" P1 p
- Check line/arc/edge periodicity.. X) b- T% h8 ]# k( [6 g* {
- */
\& p L% a6 H- N6 v7 v V - {1 ~4 t4 T% S/ f5 }4 h
- logical is_periodic;
5 [; B& Z" g% C K - # J. I' u; G! t2 Q% W4 Z+ l
- UF_CALL ( UF_EVAL_is_periodic ( line_evaluator,
% @- T/ B- L" f% v& D" O- G - &is_periodic ) );) {. i5 G4 j @, R
- UF_CALL ( UF_EVAL_is_periodic ( arc_evaluator, ( }) J1 q; s' e8 N
- &is_periodic ) );
: R3 W# I! H1 A+ i! y - UF_CALL ( UF_EVAL_is_periodic ( edge_evaluator,
1 S$ j, D; o Q. A7 h - &is_periodic ) );, k. ^1 F: z, i9 t( Q+ {
- }
* i1 F0 k& t7 u4 u - /*
3 k, n4 m: p$ N$ V( V8 |3 } - Evaluate line/arc/edge.; |: x4 ]9 r" E8 b6 `1 I
- */
1 N' ^% C! Y% K8 o. I8 C. G - {
: k* J. Z/ H+ m0 S: ?6 ?: Q0 z - double limits [ 2 ]; ( p& C: t8 n/ W
- double mid_t;
" I# c* w* X: c9 L - double point [ 3 ];
9 \2 s, M7 ~4 b0 p7 U( @. U - double derivative [ 3 ];: e5 e5 @! F0 n2 I( O6 I
- double tangent [ 3 ];
4 H7 ^# x2 Y% _9 @3 Z - double normal [ 3 ];4 G. D; |8 m ~9 v9 a
- double binormal [ 3 ];
9 A3 k6 z1 C* W/ r% ~ - UF_CALL ( UF_EVAL_ask_limits ( line_evaluator, limits ) );
0 r- R3 H2 e" K+ o/ ? - mid_t = ( limits [ 1 ] + limits [ 0 ] ) / 2.0;
& u. s: v1 C% T- d3 Y: U& F% ^ - UF_CALL ( UF_EVAL_evaluate ( line_evaluator, $ c3 u' I- X/ }4 V' `
- 1, % J% O) h0 x/ g* P) p% b
- mid_t, , x7 U) Y& Y" s; Z) Z( t+ L4 l$ e
- point, + T2 q! ?# c. |( a
- derivative ) );4 m9 Q6 ~+ _# a
- 4 |# @- C) C9 E4 |$ X
- UF_CALL ( UF_EVAL_evaluate_unit_vectors ( line_evaluator,
7 h3 S, M$ J, V# E7 M6 ^$ Q, a - mid_t,
; a1 D' w9 `6 q - point,
+ o V: [$ F0 n. T% h - tangent, 2 W: @7 {% F8 X* P4 g" ?
- normal, ?2 E% R( k. `# H, H" ~
- binormal ) );9 i# c9 ]% p' E, ^! v' m( W- P
- UF_CALL ( UF_EVAL_ask_limits ( arc_evaluator, limits ) );/ S5 m1 X+ u$ p9 |4 W) V1 E
- mid_t = ( limits [ 1 ] + limits [ 0 ] ) / 2.0;. B# F& }; c" z2 Y7 y
- 0 n# {- e5 }5 i, `5 b* S2 J7 A# T
- UF_CALL ( UF_EVAL_evaluate ( arc_evaluator, 7 [; f3 _; o- H: X
- 1,
6 j; T6 C, D7 i, ^( Q - mid_t, ( S% p3 B/ ~6 `% I8 t. f
- point, 4 d; l4 U( a T) c& k& c$ c) k
- derivative ) );* u2 ?' ?- z6 Q5 j/ ~
-
$ `5 r% Z" n7 a9 t; Q3 Q4 ` - UF_CALL ( UF_EVAL_evaluate_unit_vectors ( arc_evaluator, 5 o. g( ~) ?+ O
- mid_t, 2 S7 \+ D6 q3 x8 S* `
- point,
: r7 a2 h/ H, O" y9 L Q/ y - tangent,
, g9 K+ m) o6 K1 c& Q - normal,
/ X9 `; _7 U: [0 ] - binormal ) );
. O, Y( L4 f( [1 a$ z: L* A - UF_CALL ( UF_EVAL_ask_limits ( edge_evaluator, limits ) );
1 y" u. `* A1 t - mid_t = ( limits [ 1 ] + limits [ 0 ] ) / 2.0; M4 t! _6 h9 H! E9 o( @; v
- UF_CALL ( UF_EVAL_evaluate ( edge_evaluator, 2 t- c2 f3 V0 U4 F- |0 Q
- 1, - c/ S+ E6 @. j
- mid_t, + U% |8 G4 p4 L+ d8 \6 {' Y4 ~7 }
- point, " D( L; e8 d, q7 k; W& C
- derivative ) );4 p3 h9 h* D) r, _) G$ N y6 `" x) A
- UF_CALL ( UF_EVAL_evaluate_unit_vectors ( edge_evaluator, . |0 N, M. ^8 F! C
- mid_t, 9 ]' _& a0 d# r/ @) k7 P: `/ @0 @
- point, Z& J9 R, Z9 x0 z1 `7 e: C$ v: U
- tangent,
9 B8 e2 K: q( b! A1 Q6 X% l - normal,
' e) V. |8 E0 X9 b& D - binormal ) );% n2 f5 M9 b# {1 [( u& }
- }! j* o0 U; ^+ y
- /*
' K6 T/ A3 `' J( G2 k) Z# K7 { - Check line/arc/edge equality of evaluators.
5 ^' Q8 ?( J5 A+ A/ J, D - */; y! O: C7 R& g4 f
- {" L9 D" g" T9 E; r5 ` r
- logical is_equal;
. I! [, ] o8 x M/ c+ j Z5 O - UF_EVAL_p_t line_evaluator_copy;0 t) \0 B5 ~, t' `
- UF_CALL ( UF_EVAL_copy ( line_evaluator,7 f9 {1 J: @, W% u
- &line_evaluator_copy ) );
0 t1 V. P0 p1 W2 ~" Z. u8 ^4 Y: y8 [& P - UF_CALL ( UF_EVAL_is_equal ( line_evaluator,+ ~& n* [( f+ i* _' d+ L
- line_evaluator_copy,1 U, s3 F8 K1 y9 d/ t# g k
- &is_equal ) );
! ^4 K6 m" ]' l2 r- d3 A. O - UF_CALL ( UF_EVAL_free ( line_evaluator_copy ) );3 d- p" n( u8 J4 x' T( c
- UF_CALL ( UF_EVAL_is_equal ( line_evaluator,
. R+ }' L! B1 R- M% \ - arc_evaluator, 9 H H% E( D# d5 L+ x8 a+ _! l
- &is_equal ) );0 Q( T1 `# ^. j% Y
- UF_CALL ( UF_EVAL_is_equal ( line_evaluator, 0 x) V1 W0 Y' n8 L
- edge_evaluator,
8 o3 w% L- k) P8 U - &is_equal ) ); \2 m( T x2 ~# q) Y
- }4 M& G' v4 c7 b8 q4 z: F1 ?: V
- /*
0 D% h3 ` X& j" ~7 Z' G6 R; { - Check line/arc/edge type.: @* L8 C4 p% p! r
- */
0 v3 h$ ^7 i2 u* m3 U9 z3 q+ b - {
* V# k" F0 B! W - logical is_line;
$ B) |5 r* d, L$ p: { p - logical is_arc;
" j0 R. h Q& c1 c" J/ m9 { - UF_CALL ( UF_EVAL_is_line ( line_evaluator, &is_line ) );0 {- V. w" ^% R( |( B! e- ^- P
- UF_CALL ( UF_EVAL_is_arc ( line_evaluator, &is_arc ) );6 f2 Z5 ~$ D& W* v% G; R
- UF_CALL ( UF_EVAL_is_arc ( arc_evaluator, &is_arc ) );
2 C( v* ]% H; H" R& O8 z" x! V - UF_CALL ( UF_EVAL_is_line ( arc_evaluator, &is_line ) );
7 [8 E* \7 q; ~4 A# _' I% \ y - UF_CALL ( UF_EVAL_is_arc ( edge_evaluator, &is_arc ) );
9 `( a+ Q) L3 w - UF_CALL ( UF_EVAL_is_line ( edge_evaluator, &is_line ) );
7 R2 [1 {2 O4 q* X9 \ - }
& n( G+ T# i* @" I- O _ - UF_CALL ( UF_EVAL_free ( line_evaluator ) );" d' f4 O) S0 Y# ^
- UF_CALL ( UF_EVAL_free ( arc_evaluator ) );: U; n# H! N( j) A" l% n
- UF_CALL ( UF_EVAL_free ( edge_evaluator ) );
2 ]- W$ g% a7 R8 J* n - UF_CALL ( UF_terminate ( ) );9 r* T' C& i) }4 h1 ?8 D
- }& x& C9 K$ S2 X% T4 ~
; P' Q5 [0 y% ] |4 E1 o; X- /* This function will disply n_pts equally spaced along the8 L3 b9 b: p; R
- input curve.
5 ~4 K y; x+ B2 b' I( x" \8 i2 c0 e - */ C2 L8 x6 n# f! g1 O& w. E9 B
- static void show_edge_points(UF_EVAL_p_t eval, int n_pts), b( b; M, j3 u! w& S g/ n* M
- {
: i- x& L& ~ e2 I - int ii;$ h( Q K, \0 G
- double limits[2], p, point[3], end_parameter, start_parameter;
! N' t g- d6 T* j/ G! _+ D - UF_OBJ_disp_props_t
7 K3 E; S% u' O* h - attrib = { 1, UF_OBJ_WHITE, UF_OBJ_NOT_BLANKED, UF_OBJ_WIDTH_NORMAL,
$ D' W1 j5 _2 { - UF_OBJ_FONT_SOLID, FALSE};) S7 c2 L s: ~( D A$ b# i
- & y0 T( ^1 g7 g. Y9 P
- UF_CALL(UF_EVAL_ask_limits(eval, limits));
+ S: P8 f! f9 y7 H0 x2 B8 P - printf ( "limit0 = %f\n", limits[0] );3 x! d" N0 b K" A& S
- printf ( "limit1 = %f\n", limits[1] );
) b: t3 i6 A" q) d4 y7 }8 B - start_parameter = limits[0];/ G/ y- n, A6 z7 d
- end_parameter = limits[1];" g6 }6 e1 B; v, `
9 K4 V% i' I6 p9 K; ?- for (ii = 0; ii < n_pts; ii++); b* p& R% q0 F1 W+ m5 ]; g0 e
- {
8 u; D0 b7 Y1 s s& m - p =start_parameter + ii*((end_parameter - start_parameter)/(n_pts - 1));
$ x j( B3 i+ x3 C8 } Y - printf ( "evaluate = %f\n", p );' n8 K6 ^! M) P' K$ c5 N- m, i
- UF_CALL(UF_EVAL_evaluate(eval, 0, p, point, NULL));
0 H& e; J N$ p( L- p - UF_CALL(UF_DISP_display_temporary_point(NULL_TAG,
. Q) {2 m+ N4 O: D2 R: ^ - UF_DISP_USE_ACTIVE_PLUS, point, &attrib, UF_DISP_POINT));
) X5 l0 o. L- Z9 Q - }9 @+ {+ M, O! _( w/ @' @: u4 u
* K+ I: S) m `3 {0 p- q6 I- }
4 a" Q5 I5 Y- h8 s( A
复制代码 # S J' y. g; v3 R' L: v# d
, @4 u T! N- O( H6 ]( Q: {: U
( s. {9 r7 C6 j+ \( U |
|